基于学习的价移情感分析方法

Ruihua Cheng, J. Loh
{"title":"基于学习的价移情感分析方法","authors":"Ruihua Cheng, J. Loh","doi":"10.1109/ICDMW.2017.52","DOIUrl":null,"url":null,"abstract":"Automatic sentiment classification is becoming a popular and effective way to help online users or companies process and make sense of customer reviews. In this article, a learning-based method for classification of online reviews that achieves better classification accuracy is obtained by (a) combining valence shifters and opinion words into bigrams for use as features in an ordinal margin classifier and (b) using relational information between unigrams/bigrams in the form of a graph to constrain the parameters of the classifier. By using these two components, it is possible to extract more information present in the unstructured data than other methods such as support vector machines and random forest, hence gaining the potential of better classification performance. Indeed, our simulation results show a higher classification accuracy on empirical real data with ground truth and on simulated data.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning-Based Method with Valence Shifters for Sentiment Analysis\",\"authors\":\"Ruihua Cheng, J. Loh\",\"doi\":\"10.1109/ICDMW.2017.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic sentiment classification is becoming a popular and effective way to help online users or companies process and make sense of customer reviews. In this article, a learning-based method for classification of online reviews that achieves better classification accuracy is obtained by (a) combining valence shifters and opinion words into bigrams for use as features in an ordinal margin classifier and (b) using relational information between unigrams/bigrams in the form of a graph to constrain the parameters of the classifier. By using these two components, it is possible to extract more information present in the unstructured data than other methods such as support vector machines and random forest, hence gaining the potential of better classification performance. Indeed, our simulation results show a higher classification accuracy on empirical real data with ground truth and on simulated data.\",\"PeriodicalId\":389183,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自动情感分类正在成为一种流行而有效的方法,可以帮助在线用户或公司处理和理解客户评论。本文提出了一种基于学习的在线评论分类方法,通过(a)将价移词和意见词组合成双图作为有序边缘分类器的特征,(b)以图的形式使用双图/单图之间的关系信息来约束分类器的参数,获得了更好的分类精度。通过使用这两个组件,可以提取比其他方法(如支持向量机和随机森林)更多的非结构化数据中的信息,从而获得更好的分类性能。实际上,我们的模拟结果表明,在具有地面真值的经验真实数据和模拟数据上具有更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-Based Method with Valence Shifters for Sentiment Analysis
Automatic sentiment classification is becoming a popular and effective way to help online users or companies process and make sense of customer reviews. In this article, a learning-based method for classification of online reviews that achieves better classification accuracy is obtained by (a) combining valence shifters and opinion words into bigrams for use as features in an ordinal margin classifier and (b) using relational information between unigrams/bigrams in the form of a graph to constrain the parameters of the classifier. By using these two components, it is possible to extract more information present in the unstructured data than other methods such as support vector machines and random forest, hence gaining the potential of better classification performance. Indeed, our simulation results show a higher classification accuracy on empirical real data with ground truth and on simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信