使用边缘卸载的高能效实时虚拟现实流

Ziehen Zhu, Xianglong Feng, Zhongze Tang, Nan Jiang, Tian Guo, Lisong Xu, Sheng Wei
{"title":"使用边缘卸载的高能效实时虚拟现实流","authors":"Ziehen Zhu, Xianglong Feng, Zhongze Tang, Nan Jiang, Tian Guo, Lisong Xu, Sheng Wei","doi":"10.1145/3534088.3534351","DOIUrl":null,"url":null,"abstract":"This paper aims to address the significant power challenges in live virtual reality (VR) streaming (a.k.a., 360-degree video streaming), where the VR view rendering and the advanced deep learning operations (e.g., super-resolution) consume a considerable amount of power draining the battery-constrained VR headset. We develop EdgeVR, a power optimization technique for live VR streaming, which offloads the on-device VR rendering and deep learning operations to an edge server for power savings. To address the significantly increased motion-to-photon (MtoP) latency due to the edge offloading, we develop a live VR viewport prediction method to pre-render the VR views on the edge server and compensate for the round-trip delays. We evaluate the effectiveness of EdgeVR using an end-to-end live VR streaming system with an empirical VR head movement dataset involving 48 users watching 9 VR videos. The results reveal that EdgeVR achieves power-efficient live VR streaming with low MtoP latency.","PeriodicalId":150454,"journal":{"name":"Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital Audio and Video","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power-efficient live virtual reality streaming using edge offloading\",\"authors\":\"Ziehen Zhu, Xianglong Feng, Zhongze Tang, Nan Jiang, Tian Guo, Lisong Xu, Sheng Wei\",\"doi\":\"10.1145/3534088.3534351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to address the significant power challenges in live virtual reality (VR) streaming (a.k.a., 360-degree video streaming), where the VR view rendering and the advanced deep learning operations (e.g., super-resolution) consume a considerable amount of power draining the battery-constrained VR headset. We develop EdgeVR, a power optimization technique for live VR streaming, which offloads the on-device VR rendering and deep learning operations to an edge server for power savings. To address the significantly increased motion-to-photon (MtoP) latency due to the edge offloading, we develop a live VR viewport prediction method to pre-render the VR views on the edge server and compensate for the round-trip delays. We evaluate the effectiveness of EdgeVR using an end-to-end live VR streaming system with an empirical VR head movement dataset involving 48 users watching 9 VR videos. The results reveal that EdgeVR achieves power-efficient live VR streaming with low MtoP latency.\",\"PeriodicalId\":150454,\"journal\":{\"name\":\"Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital Audio and Video\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital Audio and Video\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3534088.3534351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital Audio and Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3534088.3534351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文旨在解决实时虚拟现实(VR)流媒体(也称为360度视频流媒体)中的重大功耗挑战,其中VR视图渲染和高级深度学习操作(例如,超分辨率)消耗了相当大的电量,耗尽了电池有限的VR头显。我们开发了EdgeVR,这是一种用于实时VR流媒体的电源优化技术,可以将设备上的VR渲染和深度学习操作卸载到边缘服务器上,从而节省电力。为了解决由于边缘卸载导致的显著增加的运动到光子(MtoP)延迟,我们开发了一种实时VR视口预测方法,以在边缘服务器上预渲染VR视图并补偿往返延迟。我们使用端到端实时VR流媒体系统评估EdgeVR的有效性,该系统包含48个用户观看9个VR视频的经验VR头部运动数据集。结果表明,EdgeVR实现了低MtoP延迟的节能实时VR流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power-efficient live virtual reality streaming using edge offloading
This paper aims to address the significant power challenges in live virtual reality (VR) streaming (a.k.a., 360-degree video streaming), where the VR view rendering and the advanced deep learning operations (e.g., super-resolution) consume a considerable amount of power draining the battery-constrained VR headset. We develop EdgeVR, a power optimization technique for live VR streaming, which offloads the on-device VR rendering and deep learning operations to an edge server for power savings. To address the significantly increased motion-to-photon (MtoP) latency due to the edge offloading, we develop a live VR viewport prediction method to pre-render the VR views on the edge server and compensate for the round-trip delays. We evaluate the effectiveness of EdgeVR using an end-to-end live VR streaming system with an empirical VR head movement dataset involving 48 users watching 9 VR videos. The results reveal that EdgeVR achieves power-efficient live VR streaming with low MtoP latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信