群体智慧?大众的股票意见和股票收益

Bastian Breitmayer, Filippo Massari, Matthias Pelster
{"title":"群体智慧?大众的股票意见和股票收益","authors":"Bastian Breitmayer, Filippo Massari, Matthias Pelster","doi":"10.2139/ssrn.2787744","DOIUrl":null,"url":null,"abstract":"We find that crowds’ analyses of stocks, disclosed on a social investment platform, provide explanatory power for stock returns. Exploiting a novel dataset that contains more than 14.9 million individual stock assessments for 10,452 stocks over the period from August 1, 2007, to July 15, 2015, our study shows that social networks may add valuable information for explaining future and abnormal stock returns. We find that a portfolio based on social media opinions yields a monthly excess return of 3.3%. We provide a theoretical rationale for our findings based on the argument that the platform is subject to fewer institutional restrictions and is designed more efficiently for prediction than financial markets.","PeriodicalId":365642,"journal":{"name":"ERN: Behavioral Finance (Microeconomics) (Topic)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Swarm Intelligence? Stock Opinions of the Crowd and Stock Returns\",\"authors\":\"Bastian Breitmayer, Filippo Massari, Matthias Pelster\",\"doi\":\"10.2139/ssrn.2787744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We find that crowds’ analyses of stocks, disclosed on a social investment platform, provide explanatory power for stock returns. Exploiting a novel dataset that contains more than 14.9 million individual stock assessments for 10,452 stocks over the period from August 1, 2007, to July 15, 2015, our study shows that social networks may add valuable information for explaining future and abnormal stock returns. We find that a portfolio based on social media opinions yields a monthly excess return of 3.3%. We provide a theoretical rationale for our findings based on the argument that the platform is subject to fewer institutional restrictions and is designed more efficiently for prediction than financial markets.\",\"PeriodicalId\":365642,\"journal\":{\"name\":\"ERN: Behavioral Finance (Microeconomics) (Topic)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Behavioral Finance (Microeconomics) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2787744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Behavioral Finance (Microeconomics) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2787744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们发现,在社交投资平台上披露的人群对股票的分析对股票收益提供了解释力。利用一个新的数据集,该数据集包含2007年8月1日至2015年7月15日期间10,452只股票的超过1490万个人股票评估,我们的研究表明,社交网络可能为解释未来和异常股票回报增加有价值的信息。我们发现,基于社交媒体观点的投资组合每月的超额回报率为3.3%。我们为我们的研究结果提供了一个理论基础,即该平台受较少的制度限制,并且比金融市场更有效地设计用于预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Swarm Intelligence? Stock Opinions of the Crowd and Stock Returns
We find that crowds’ analyses of stocks, disclosed on a social investment platform, provide explanatory power for stock returns. Exploiting a novel dataset that contains more than 14.9 million individual stock assessments for 10,452 stocks over the period from August 1, 2007, to July 15, 2015, our study shows that social networks may add valuable information for explaining future and abnormal stock returns. We find that a portfolio based on social media opinions yields a monthly excess return of 3.3%. We provide a theoretical rationale for our findings based on the argument that the platform is subject to fewer institutional restrictions and is designed more efficiently for prediction than financial markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信