大规模Linux集群的性能分析工具

Z. Cvetanovic
{"title":"大规模Linux集群的性能分析工具","authors":"Z. Cvetanovic","doi":"10.1109/CLUSTR.2004.1392635","DOIUrl":null,"url":null,"abstract":"As cluster computer environments increase in size and complexity, it is becoming more challenging to analyze and identify factors that limit performance and scalability. Easy-to-use tools that help identify such bottlenecks are crucial for tuning applications and configuring systems for best performance. We present a collection of visualization tools, which allow users to monitor load on all cluster components simultaneously, with negligible overhead, and no changes in the application. We include examples where the tools have been used to identify bottlenecks within a cluster and improve performance. We provide several examples of application profiles gathered using the tools and outline the methodology for projecting performance of future cluster platforms.","PeriodicalId":123512,"journal":{"name":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance analysis tools for large-scale Linux clusters\",\"authors\":\"Z. Cvetanovic\",\"doi\":\"10.1109/CLUSTR.2004.1392635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As cluster computer environments increase in size and complexity, it is becoming more challenging to analyze and identify factors that limit performance and scalability. Easy-to-use tools that help identify such bottlenecks are crucial for tuning applications and configuring systems for best performance. We present a collection of visualization tools, which allow users to monitor load on all cluster components simultaneously, with negligible overhead, and no changes in the application. We include examples where the tools have been used to identify bottlenecks within a cluster and improve performance. We provide several examples of application profiles gathered using the tools and outline the methodology for projecting performance of future cluster platforms.\",\"PeriodicalId\":123512,\"journal\":{\"name\":\"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2004.1392635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2004.1392635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着集群计算机环境的规模和复杂性的增加,分析和识别限制性能和可伸缩性的因素变得越来越具有挑战性。帮助识别此类瓶颈的易于使用的工具对于调优应用程序和配置系统以获得最佳性能至关重要。我们提供了一组可视化工具,它们允许用户同时监视所有集群组件上的负载,开销可以忽略不计,并且不改变应用程序。我们提供了一些示例,其中使用这些工具来识别集群中的瓶颈并提高性能。我们提供了几个使用这些工具收集的应用程序概要示例,并概述了预测未来集群平台性能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis tools for large-scale Linux clusters
As cluster computer environments increase in size and complexity, it is becoming more challenging to analyze and identify factors that limit performance and scalability. Easy-to-use tools that help identify such bottlenecks are crucial for tuning applications and configuring systems for best performance. We present a collection of visualization tools, which allow users to monitor load on all cluster components simultaneously, with negligible overhead, and no changes in the application. We include examples where the tools have been used to identify bottlenecks within a cluster and improve performance. We provide several examples of application profiles gathered using the tools and outline the methodology for projecting performance of future cluster platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信