A. Ennajih, J. Zbitou, A. Errkik, A. Tajmouati, L. El Abdellaoui, M. Latrach
{"title":"一种新型纸上无源超高频RFID标签天线设计","authors":"A. Ennajih, J. Zbitou, A. Errkik, A. Tajmouati, L. El Abdellaoui, M. Latrach","doi":"10.1109/WITS.2017.7934631","DOIUrl":null,"url":null,"abstract":"In this paper, a novel design of metamaterial passive tag antenna for radio frequency identification operating in the UHF band is proposed. The design of the proposed tag antenna included a meandering technique to match the antenna with the tag chip and a complementary split ring resonator to reduce the antenna size. An advanced Photopaper substrate having a permittivity of 3.3, loss tangent of 0.04 and thickness of 0.25mm is used to design this tag antenna. The dimensions of the proposed tag antenna are optimized by using ADS. The total size of this circuit is 84.6 × 28mm2. The performance of the proposed tag antenna is evaluated and analyzed based on gain, return loss, matching input impedance and read range. The simulated reflection coefficient is about −35dB at 915MHz, the impedance bandwidth is about 32.8MHz, gain is 1.8dB, and the read range is about 6.2 m.","PeriodicalId":147797,"journal":{"name":"2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A novel design of passive UHF RFID tag antenna mounted on paper\",\"authors\":\"A. Ennajih, J. Zbitou, A. Errkik, A. Tajmouati, L. El Abdellaoui, M. Latrach\",\"doi\":\"10.1109/WITS.2017.7934631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel design of metamaterial passive tag antenna for radio frequency identification operating in the UHF band is proposed. The design of the proposed tag antenna included a meandering technique to match the antenna with the tag chip and a complementary split ring resonator to reduce the antenna size. An advanced Photopaper substrate having a permittivity of 3.3, loss tangent of 0.04 and thickness of 0.25mm is used to design this tag antenna. The dimensions of the proposed tag antenna are optimized by using ADS. The total size of this circuit is 84.6 × 28mm2. The performance of the proposed tag antenna is evaluated and analyzed based on gain, return loss, matching input impedance and read range. The simulated reflection coefficient is about −35dB at 915MHz, the impedance bandwidth is about 32.8MHz, gain is 1.8dB, and the read range is about 6.2 m.\",\"PeriodicalId\":147797,\"journal\":{\"name\":\"2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.2017.7934631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.2017.7934631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel design of passive UHF RFID tag antenna mounted on paper
In this paper, a novel design of metamaterial passive tag antenna for radio frequency identification operating in the UHF band is proposed. The design of the proposed tag antenna included a meandering technique to match the antenna with the tag chip and a complementary split ring resonator to reduce the antenna size. An advanced Photopaper substrate having a permittivity of 3.3, loss tangent of 0.04 and thickness of 0.25mm is used to design this tag antenna. The dimensions of the proposed tag antenna are optimized by using ADS. The total size of this circuit is 84.6 × 28mm2. The performance of the proposed tag antenna is evaluated and analyzed based on gain, return loss, matching input impedance and read range. The simulated reflection coefficient is about −35dB at 915MHz, the impedance bandwidth is about 32.8MHz, gain is 1.8dB, and the read range is about 6.2 m.