Fauzi Adi Rafrastaraa, R. A. Pramunendar, D. P. Prabowo, Etika Kartikadarma, Usman Sudibyo
{"title":"随机森林主成分分析与检测恶意软件的优化算法","authors":"Fauzi Adi Rafrastaraa, R. A. Pramunendar, D. P. Prabowo, Etika Kartikadarma, Usman Sudibyo","doi":"10.47233/jteksis.v5i3.854","DOIUrl":null,"url":null,"abstract":"Malware is a type of software designed to harm various devices. As malware evolves and diversifies, traditional signature-based detection methods have become less effective against advanced types such as polymorphic, metamorphic, and oligomorphic malware. To address this challenge, machine learning-based malware detection has emerged as a promising solution. In this study, we evaluated the performance of several machine learning algorithms in detecting malware and applied Principal Component Analysis (PCA) to the best-performing algorithm to reduce the number of features and improve performance. Our results showed that the Random Forest algorithm outperformed Adaboost, Neural Network, Support Vector Machine, and k-Nearest Neighbor algorithms with an accuracy and recall rate of 98.3%. By applying PCA, we were able to further improve the performance of Random Forest to 98.7% for both accuracy and recall while reducing the number of features from 1084 to 32.","PeriodicalId":378707,"journal":{"name":"Jurnal Teknologi Dan Sistem Informasi Bisnis","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimasi Algoritma Random Forest menggunakan Principal Component Analysis untuk Deteksi Malware\",\"authors\":\"Fauzi Adi Rafrastaraa, R. A. Pramunendar, D. P. Prabowo, Etika Kartikadarma, Usman Sudibyo\",\"doi\":\"10.47233/jteksis.v5i3.854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware is a type of software designed to harm various devices. As malware evolves and diversifies, traditional signature-based detection methods have become less effective against advanced types such as polymorphic, metamorphic, and oligomorphic malware. To address this challenge, machine learning-based malware detection has emerged as a promising solution. In this study, we evaluated the performance of several machine learning algorithms in detecting malware and applied Principal Component Analysis (PCA) to the best-performing algorithm to reduce the number of features and improve performance. Our results showed that the Random Forest algorithm outperformed Adaboost, Neural Network, Support Vector Machine, and k-Nearest Neighbor algorithms with an accuracy and recall rate of 98.3%. By applying PCA, we were able to further improve the performance of Random Forest to 98.7% for both accuracy and recall while reducing the number of features from 1084 to 32.\",\"PeriodicalId\":378707,\"journal\":{\"name\":\"Jurnal Teknologi Dan Sistem Informasi Bisnis\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Dan Sistem Informasi Bisnis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47233/jteksis.v5i3.854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Dan Sistem Informasi Bisnis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47233/jteksis.v5i3.854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimasi Algoritma Random Forest menggunakan Principal Component Analysis untuk Deteksi Malware
Malware is a type of software designed to harm various devices. As malware evolves and diversifies, traditional signature-based detection methods have become less effective against advanced types such as polymorphic, metamorphic, and oligomorphic malware. To address this challenge, machine learning-based malware detection has emerged as a promising solution. In this study, we evaluated the performance of several machine learning algorithms in detecting malware and applied Principal Component Analysis (PCA) to the best-performing algorithm to reduce the number of features and improve performance. Our results showed that the Random Forest algorithm outperformed Adaboost, Neural Network, Support Vector Machine, and k-Nearest Neighbor algorithms with an accuracy and recall rate of 98.3%. By applying PCA, we were able to further improve the performance of Random Forest to 98.7% for both accuracy and recall while reducing the number of features from 1084 to 32.