基于散度的光谱数据矢量量化

T. Villmann, S. Haase
{"title":"基于散度的光谱数据矢量量化","authors":"T. Villmann, S. Haase","doi":"10.1109/WHISPERS.2010.5594946","DOIUrl":null,"url":null,"abstract":"Unsupervised and supervised vector quantization models for clustering and classification are usually designed for processing of Euclidean vectorial data. Yet, in this scenario the physical context might be not adequately reflected. For example, spectra can be seen as positive functions (positive measures). Yet, this context information is not used in Euclidean vector quantization. — In this contribution we propose a methodology for extending gradient based vector quantization approaches utilizing divergences as dissimilarity measure instead of the Euclidean distance for positive measures. Divergences are specifically designed to judge the dissimilarities between positive measures and have frequently an underlying physical meaning. We present in the paper the mathematical foundation for plugging divergences into vector quantization schemes and their adaptation rules. Thereafter, we demonstrate the ability of this methodology for the self-organizing map as widely ranged vector quantizer, applying it for topographic data clustering of a hyperspectral AVIRIS image cube taken from a lunar crater volcanic field.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Divergence based vector quantization of spectral data\",\"authors\":\"T. Villmann, S. Haase\",\"doi\":\"10.1109/WHISPERS.2010.5594946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised and supervised vector quantization models for clustering and classification are usually designed for processing of Euclidean vectorial data. Yet, in this scenario the physical context might be not adequately reflected. For example, spectra can be seen as positive functions (positive measures). Yet, this context information is not used in Euclidean vector quantization. — In this contribution we propose a methodology for extending gradient based vector quantization approaches utilizing divergences as dissimilarity measure instead of the Euclidean distance for positive measures. Divergences are specifically designed to judge the dissimilarities between positive measures and have frequently an underlying physical meaning. We present in the paper the mathematical foundation for plugging divergences into vector quantization schemes and their adaptation rules. Thereafter, we demonstrate the ability of this methodology for the self-organizing map as widely ranged vector quantizer, applying it for topographic data clustering of a hyperspectral AVIRIS image cube taken from a lunar crater volcanic field.\",\"PeriodicalId\":193944,\"journal\":{\"name\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2010.5594946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通常设计用于聚类和分类的无监督和监督矢量量化模型来处理欧几里得矢量数据。然而,在这种情况下,物理环境可能没有得到充分反映。例如,光谱可以看作是正函数(正测度)。然而,在欧几里得矢量量化中没有使用这些上下文信息。-在此贡献中,我们提出了一种扩展基于梯度的矢量量化方法的方法,利用散度作为不相似度量而不是欧几里得距离作为正度量。分歧是专门用来判断积极措施之间的差异,并经常具有潜在的物理意义。本文给出了将散度插入矢量量化方案的数学基础及其自适应规则。随后,我们证明了该方法作为大范围矢量量化器的自组织地图的能力,并将其应用于从月球陨石坑火山场拍摄的高光谱AVIRIS图像立方体的地形数据聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divergence based vector quantization of spectral data
Unsupervised and supervised vector quantization models for clustering and classification are usually designed for processing of Euclidean vectorial data. Yet, in this scenario the physical context might be not adequately reflected. For example, spectra can be seen as positive functions (positive measures). Yet, this context information is not used in Euclidean vector quantization. — In this contribution we propose a methodology for extending gradient based vector quantization approaches utilizing divergences as dissimilarity measure instead of the Euclidean distance for positive measures. Divergences are specifically designed to judge the dissimilarities between positive measures and have frequently an underlying physical meaning. We present in the paper the mathematical foundation for plugging divergences into vector quantization schemes and their adaptation rules. Thereafter, we demonstrate the ability of this methodology for the self-organizing map as widely ranged vector quantizer, applying it for topographic data clustering of a hyperspectral AVIRIS image cube taken from a lunar crater volcanic field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信