{"title":"流处理器和模型","authors":"Richard Garner","doi":"10.46298/lmcs-19(1:2)2023","DOIUrl":null,"url":null,"abstract":"In 2009, Hancock, Pattinson and Ghani gave a coalgebraic characterisation of\nstream processors $A^\\mathbb{N} \\to B^\\mathbb{N}$ drawing on ideas of\nBrouwerian constructivism. Their stream processors have an intensional\ncharacter; in this paper, we give a corresponding coalgebraic characterisation\nof extensional stream processors, i.e., the set of continuous functions\n$A^\\mathbb{N} \\to B^\\mathbb{N}$. Our account sites both our result and that of\nop. cit. within the apparatus of comodels for algebraic effects originating\nwith Power-Shkaravska. Within this apparatus, the distinction between\nintensional and extensional equivalence for stream processors arises in the\nsame way as the the distinction between bisimulation and trace equivalence for\nlabelled transition systems and probabilistic generative systems.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stream processors and comodels\",\"authors\":\"Richard Garner\",\"doi\":\"10.46298/lmcs-19(1:2)2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2009, Hancock, Pattinson and Ghani gave a coalgebraic characterisation of\\nstream processors $A^\\\\mathbb{N} \\\\to B^\\\\mathbb{N}$ drawing on ideas of\\nBrouwerian constructivism. Their stream processors have an intensional\\ncharacter; in this paper, we give a corresponding coalgebraic characterisation\\nof extensional stream processors, i.e., the set of continuous functions\\n$A^\\\\mathbb{N} \\\\to B^\\\\mathbb{N}$. Our account sites both our result and that of\\nop. cit. within the apparatus of comodels for algebraic effects originating\\nwith Power-Shkaravska. Within this apparatus, the distinction between\\nintensional and extensional equivalence for stream processors arises in the\\nsame way as the the distinction between bisimulation and trace equivalence for\\nlabelled transition systems and probabilistic generative systems.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-19(1:2)2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(1:2)2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
2009年,Hancock, Pattinson和Ghani利用browwerian建构主义思想给出了流处理器$ a ^\mathbb{N}到B^\mathbb{N}$的共代数表征。它们的流处理器具有密集特征;本文给出了扩展流处理器的一个相应的共代数表征,即连续函数$ a ^\mathbb{N}$到B^\mathbb{N}$的集合。我们的帐户站点我们的结果和op。引用:在由幂-什卡拉夫斯卡引起的代数效应的模型装置内。在这个装置中,流处理器的内涵等价和外延等价之间的区别与标记转换系统和概率生成系统的双模拟和跟踪等价之间的区别相同。
In 2009, Hancock, Pattinson and Ghani gave a coalgebraic characterisation of
stream processors $A^\mathbb{N} \to B^\mathbb{N}$ drawing on ideas of
Brouwerian constructivism. Their stream processors have an intensional
character; in this paper, we give a corresponding coalgebraic characterisation
of extensional stream processors, i.e., the set of continuous functions
$A^\mathbb{N} \to B^\mathbb{N}$. Our account sites both our result and that of
op. cit. within the apparatus of comodels for algebraic effects originating
with Power-Shkaravska. Within this apparatus, the distinction between
intensional and extensional equivalence for stream processors arises in the
same way as the the distinction between bisimulation and trace equivalence for
labelled transition systems and probabilistic generative systems.