无关系完整性和分离

P. Hrubes, A. Wigderson, A. Yehudayoff
{"title":"无关系完整性和分离","authors":"P. Hrubes, A. Wigderson, A. Yehudayoff","doi":"10.1109/CCC.2010.34","DOIUrl":null,"url":null,"abstract":"This paper extends Valiant’s work on VP and VNP to the settings in which variables are not multiplicatively commutative and/or associative. Our main result is a theory of completeness for these algebraic worlds. We define analogs of Valiant’s classes VP and VNP, as well as of the polynomials permanent and determinant, in these worlds. We then prove that even in a completely relationless world which assumes no commutativity nor associativity, permanent remains VNP-complete, and determinant can polynomially simulate any arithmetic formula, just as in the standard commutative, associative world of Valiant. In the absence of associativity, the completeness proof gives rise to the following combinatorial problem: what is the smallest binary tree which contains as minors all binary trees with n leaves. We give an explicit construction of such a universal tree of polynomial size, a result of possibly independent interest. Given that such non-trivial reductions are possible even without commutativity and associativity, we turn to lower bounds. In the non-associative, commutative world we prove exponential circuit lower bounds on explicit polynomials, separating the non-associative commutative analogs of VP and VNP. Obtaining such lower bounds and a separation in the complementary associative, non-commutative world has been open for about 30 years.","PeriodicalId":328781,"journal":{"name":"2010 IEEE 25th Annual Conference on Computational Complexity","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Relationless Completeness and Separations\",\"authors\":\"P. Hrubes, A. Wigderson, A. Yehudayoff\",\"doi\":\"10.1109/CCC.2010.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends Valiant’s work on VP and VNP to the settings in which variables are not multiplicatively commutative and/or associative. Our main result is a theory of completeness for these algebraic worlds. We define analogs of Valiant’s classes VP and VNP, as well as of the polynomials permanent and determinant, in these worlds. We then prove that even in a completely relationless world which assumes no commutativity nor associativity, permanent remains VNP-complete, and determinant can polynomially simulate any arithmetic formula, just as in the standard commutative, associative world of Valiant. In the absence of associativity, the completeness proof gives rise to the following combinatorial problem: what is the smallest binary tree which contains as minors all binary trees with n leaves. We give an explicit construction of such a universal tree of polynomial size, a result of possibly independent interest. Given that such non-trivial reductions are possible even without commutativity and associativity, we turn to lower bounds. In the non-associative, commutative world we prove exponential circuit lower bounds on explicit polynomials, separating the non-associative commutative analogs of VP and VNP. Obtaining such lower bounds and a separation in the complementary associative, non-commutative world has been open for about 30 years.\",\"PeriodicalId\":328781,\"journal\":{\"name\":\"2010 IEEE 25th Annual Conference on Computational Complexity\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 25th Annual Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2010.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 25th Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2010.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文将Valiant在VP和VNP方面的工作扩展到变量不具有乘法交换性和/或结合性的情况。我们的主要结果是这些代数世界的完备性理论。在这些世界中,我们定义了Valiant的类VP和VNP的类似物,以及多项式的永久和行列式。然后我们证明了即使在一个完全无关系的世界中,既没有交换性也没有结合性,恒量仍然是vnp完全的,并且行列式可以多项式地模拟任何算术公式,就像在Valiant的标准交换结合律世界中一样。在不存在结合性的情况下,完备性证明产生了以下的组合问题:包含所有n个叶的二叉树作为子树的最小二叉树是什么?我们给出了这样一个多项式大小的通用树的显式构造,这可能是一个独立的兴趣结果。假设这样的非平凡约简即使没有交换性和结合律也是可能的,我们转向下界。在非结合能交换的世界中,我们证明了显式多项式的指数回路下界,分离了VP和VNP的非结合能交换类似。在互补结合的非交换世界中获得这样的下界和分离已经开放了大约30年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationless Completeness and Separations
This paper extends Valiant’s work on VP and VNP to the settings in which variables are not multiplicatively commutative and/or associative. Our main result is a theory of completeness for these algebraic worlds. We define analogs of Valiant’s classes VP and VNP, as well as of the polynomials permanent and determinant, in these worlds. We then prove that even in a completely relationless world which assumes no commutativity nor associativity, permanent remains VNP-complete, and determinant can polynomially simulate any arithmetic formula, just as in the standard commutative, associative world of Valiant. In the absence of associativity, the completeness proof gives rise to the following combinatorial problem: what is the smallest binary tree which contains as minors all binary trees with n leaves. We give an explicit construction of such a universal tree of polynomial size, a result of possibly independent interest. Given that such non-trivial reductions are possible even without commutativity and associativity, we turn to lower bounds. In the non-associative, commutative world we prove exponential circuit lower bounds on explicit polynomials, separating the non-associative commutative analogs of VP and VNP. Obtaining such lower bounds and a separation in the complementary associative, non-commutative world has been open for about 30 years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信