BPS域壁从环形超多

R. N. Wijaya, F. Akbar, J. Kosasih, B. Gunara
{"title":"BPS域壁从环形超多","authors":"R. N. Wijaya, F. Akbar, J. Kosasih, B. Gunara","doi":"10.12988/ASTP.2018.827","DOIUrl":null,"url":null,"abstract":"In this paper, we present the gradient flow equations of BPS domain walls of five dimensional gauged N = 2 supergravity coupled to a hypermultiplet where the hypermultiplet scalar manifold is chosen to be the most general selfdual Einstein spaces admitting torus symmetry. An interesting result is that the gradient flows describe the supersymmetric flows and the spin-12 fermion masses on the walls which is on the upper half plane. For further analysis, we provide stability condition for the flow equation obtained for BPS domain walls.","PeriodicalId":127314,"journal":{"name":"Advanced Studies in Theoretical Physics","volume":"SE-8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BPS domain wall from toric hypermultiplet\",\"authors\":\"R. N. Wijaya, F. Akbar, J. Kosasih, B. Gunara\",\"doi\":\"10.12988/ASTP.2018.827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the gradient flow equations of BPS domain walls of five dimensional gauged N = 2 supergravity coupled to a hypermultiplet where the hypermultiplet scalar manifold is chosen to be the most general selfdual Einstein spaces admitting torus symmetry. An interesting result is that the gradient flows describe the supersymmetric flows and the spin-12 fermion masses on the walls which is on the upper half plane. For further analysis, we provide stability condition for the flow equation obtained for BPS domain walls.\",\"PeriodicalId\":127314,\"journal\":{\"name\":\"Advanced Studies in Theoretical Physics\",\"volume\":\"SE-8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Studies in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/ASTP.2018.827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Studies in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/ASTP.2018.827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了五维量规N = 2超重力耦合到一个超多元的BPS域壁的梯度流动方程,其中超多元标量流形是最一般的自对偶爱因斯坦空间,承认环面对称。一个有趣的结果是梯度流描述了超对称流和自旋为12的费米子在壁上的质量,在上半平面上。为了进一步分析,我们给出了BPS畴壁流动方程的稳定性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BPS domain wall from toric hypermultiplet
In this paper, we present the gradient flow equations of BPS domain walls of five dimensional gauged N = 2 supergravity coupled to a hypermultiplet where the hypermultiplet scalar manifold is chosen to be the most general selfdual Einstein spaces admitting torus symmetry. An interesting result is that the gradient flows describe the supersymmetric flows and the spin-12 fermion masses on the walls which is on the upper half plane. For further analysis, we provide stability condition for the flow equation obtained for BPS domain walls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信