面向沉浸式社交视觉分析的组合微服务

Senaka Fernando, David Birch, Miguel Molina-Solana, D. McIlwraith, Yike Guo
{"title":"面向沉浸式社交视觉分析的组合微服务","authors":"Senaka Fernando, David Birch, Miguel Molina-Solana, D. McIlwraith, Yike Guo","doi":"10.1109/IV.2019.00044","DOIUrl":null,"url":null,"abstract":"As humans, we have developed to process highly complex visual data from our surroundings. This is why data visualization and interaction is one of the quickest ways to facilitate investigation and communicate understanding. To perform visual analytics effectively at the \\textit{big data} scale it is crucial that we develop an integrated processing and visualization ecosystem. However, to date, in Large High-Resolution Display (LHRD) environments the worlds of data processing and visualization remain largely disconnected. In this paper, we propose a common architectural approach to enable integrated data processing and distributed visualization via the composition of discrete microservices. Each of these microservices provides a very specific clearly-defined function, such as analyzing data, creating a visualization, sharding data or providing a synchronization source. By defining common transport, data and API formats we enable the composition of these microservices from processing raw data through to analytics, visualization and rendering. This compositionality, inspired by successful data-driven visualization frameworks provides a common platform for immersive social visual analytics.","PeriodicalId":429883,"journal":{"name":"2019 23rd International Conference Information Visualisation (IV)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Compositional Microservices for Immersive Social Visual Analytics\",\"authors\":\"Senaka Fernando, David Birch, Miguel Molina-Solana, D. McIlwraith, Yike Guo\",\"doi\":\"10.1109/IV.2019.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As humans, we have developed to process highly complex visual data from our surroundings. This is why data visualization and interaction is one of the quickest ways to facilitate investigation and communicate understanding. To perform visual analytics effectively at the \\\\textit{big data} scale it is crucial that we develop an integrated processing and visualization ecosystem. However, to date, in Large High-Resolution Display (LHRD) environments the worlds of data processing and visualization remain largely disconnected. In this paper, we propose a common architectural approach to enable integrated data processing and distributed visualization via the composition of discrete microservices. Each of these microservices provides a very specific clearly-defined function, such as analyzing data, creating a visualization, sharding data or providing a synchronization source. By defining common transport, data and API formats we enable the composition of these microservices from processing raw data through to analytics, visualization and rendering. This compositionality, inspired by successful data-driven visualization frameworks provides a common platform for immersive social visual analytics.\",\"PeriodicalId\":429883,\"journal\":{\"name\":\"2019 23rd International Conference Information Visualisation (IV)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 23rd International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV.2019.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 23rd International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2019.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

作为人类,我们已经发展到能够处理来自周围环境的高度复杂的视觉数据。这就是为什么数据可视化和交互是促进调查和沟通理解的最快方法之一。为了在\textit{大数据}规模上有效地执行可视化分析,我们必须开发一个集成的处理和可视化生态系统。然而,到目前为止,在大分辨率显示(LHRD)环境中,数据处理和可视化的世界在很大程度上仍然是脱节的。在本文中,我们提出了一种通用的架构方法,通过离散微服务的组合来实现集成数据处理和分布式可视化。这些微服务中的每一个都提供了一个非常明确的功能,比如分析数据、创建可视化、对数据进行分片或提供同步源。通过定义通用的传输、数据和API格式,我们支持这些微服务的组合,从处理原始数据到分析、可视化和呈现。这种组合性受到成功的数据驱动可视化框架的启发,为沉浸式社会可视化分析提供了一个通用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compositional Microservices for Immersive Social Visual Analytics
As humans, we have developed to process highly complex visual data from our surroundings. This is why data visualization and interaction is one of the quickest ways to facilitate investigation and communicate understanding. To perform visual analytics effectively at the \textit{big data} scale it is crucial that we develop an integrated processing and visualization ecosystem. However, to date, in Large High-Resolution Display (LHRD) environments the worlds of data processing and visualization remain largely disconnected. In this paper, we propose a common architectural approach to enable integrated data processing and distributed visualization via the composition of discrete microservices. Each of these microservices provides a very specific clearly-defined function, such as analyzing data, creating a visualization, sharding data or providing a synchronization source. By defining common transport, data and API formats we enable the composition of these microservices from processing raw data through to analytics, visualization and rendering. This compositionality, inspired by successful data-driven visualization frameworks provides a common platform for immersive social visual analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信