{"title":"基于图像的分类器决策边界可视化","authors":"F. C. M. Rodrigues, R. Hirata, A. Telea","doi":"10.1109/SIBGRAPI.2018.00052","DOIUrl":null,"url":null,"abstract":"Understanding how a classifier partitions a high-dimensional input space and assigns labels to the parts is an important task in machine learning. Current methods for this task mainly use color-coded sample scatterplots, which do not explicitly show the actual decision boundaries or confusion zones. We propose an image-based technique to improve such visualizations. The method samples the 2D space of a dimensionality-reduction projection and color-code relevant classifier outputs, such as the majority class label, the confusion, and the sample density, to render a dense depiction of the high-dimensional decision boundaries. Our technique is simple to implement, handles any classifier, and has only two simple-to-control free parameters. We demonstrate our proposal on several real-world high-dimensional datasets, classifiers, and two different dimensionality reduction methods.","PeriodicalId":208985,"journal":{"name":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"30 24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Image-Based Visualization of Classifier Decision Boundaries\",\"authors\":\"F. C. M. Rodrigues, R. Hirata, A. Telea\",\"doi\":\"10.1109/SIBGRAPI.2018.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding how a classifier partitions a high-dimensional input space and assigns labels to the parts is an important task in machine learning. Current methods for this task mainly use color-coded sample scatterplots, which do not explicitly show the actual decision boundaries or confusion zones. We propose an image-based technique to improve such visualizations. The method samples the 2D space of a dimensionality-reduction projection and color-code relevant classifier outputs, such as the majority class label, the confusion, and the sample density, to render a dense depiction of the high-dimensional decision boundaries. Our technique is simple to implement, handles any classifier, and has only two simple-to-control free parameters. We demonstrate our proposal on several real-world high-dimensional datasets, classifiers, and two different dimensionality reduction methods.\",\"PeriodicalId\":208985,\"journal\":{\"name\":\"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"volume\":\"30 24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2018.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2018.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image-Based Visualization of Classifier Decision Boundaries
Understanding how a classifier partitions a high-dimensional input space and assigns labels to the parts is an important task in machine learning. Current methods for this task mainly use color-coded sample scatterplots, which do not explicitly show the actual decision boundaries or confusion zones. We propose an image-based technique to improve such visualizations. The method samples the 2D space of a dimensionality-reduction projection and color-code relevant classifier outputs, such as the majority class label, the confusion, and the sample density, to render a dense depiction of the high-dimensional decision boundaries. Our technique is simple to implement, handles any classifier, and has only two simple-to-control free parameters. We demonstrate our proposal on several real-world high-dimensional datasets, classifiers, and two different dimensionality reduction methods.