随机优化直接搜索方法的收敛性

Sujin Kim, Dali Zhang
{"title":"随机优化直接搜索方法的收敛性","authors":"Sujin Kim, Dali Zhang","doi":"10.1109/WSC.2010.5679089","DOIUrl":null,"url":null,"abstract":"Simulation is widely used to evaluate the performance and optimize the design of a complex system. In the past few decades, a great deal of research has been devoted to solving simulation optimization problems, perhaps owing to their generality. However, although there are many problems of practical interests that can be cast in the framework of simulation optimization, it is often difficult to obtain an understanding of their structure, making them very challenging. Direct search methods are a class of deterministic optimization methods particularly designed for black-box optimization problems. In this paper, we present a class of direct search methods for simulation optimization problems with stochastic noise. The optimization problem is approximated using a sample average approximation scheme. We propose an adaptive sampling scheme to improve the efficiency of direct search methods and prove the consistency of the solutions.","PeriodicalId":272260,"journal":{"name":"Proceedings of the 2010 Winter Simulation Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Convergence properties of direct search methods for stochastic optimization\",\"authors\":\"Sujin Kim, Dali Zhang\",\"doi\":\"10.1109/WSC.2010.5679089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation is widely used to evaluate the performance and optimize the design of a complex system. In the past few decades, a great deal of research has been devoted to solving simulation optimization problems, perhaps owing to their generality. However, although there are many problems of practical interests that can be cast in the framework of simulation optimization, it is often difficult to obtain an understanding of their structure, making them very challenging. Direct search methods are a class of deterministic optimization methods particularly designed for black-box optimization problems. In this paper, we present a class of direct search methods for simulation optimization problems with stochastic noise. The optimization problem is approximated using a sample average approximation scheme. We propose an adaptive sampling scheme to improve the efficiency of direct search methods and prove the consistency of the solutions.\",\"PeriodicalId\":272260,\"journal\":{\"name\":\"Proceedings of the 2010 Winter Simulation Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2010 Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2010.5679089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2010 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2010.5679089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

仿真被广泛应用于复杂系统的性能评估和优化设计。在过去的几十年里,大量的研究一直致力于解决仿真优化问题,也许是由于它们的通用性。然而,尽管在仿真优化的框架下可以投下许多实际利益的问题,但往往很难获得对其结构的理解,这使得它们非常具有挑战性。直接搜索法是一类专门针对黑盒优化问题而设计的确定性优化方法。在本文中,我们提出了一类具有随机噪声的模拟优化问题的直接搜索方法。采用样本平均近似方法对优化问题进行逼近。为了提高直接搜索方法的效率并证明解的一致性,我们提出了一种自适应采样方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence properties of direct search methods for stochastic optimization
Simulation is widely used to evaluate the performance and optimize the design of a complex system. In the past few decades, a great deal of research has been devoted to solving simulation optimization problems, perhaps owing to their generality. However, although there are many problems of practical interests that can be cast in the framework of simulation optimization, it is often difficult to obtain an understanding of their structure, making them very challenging. Direct search methods are a class of deterministic optimization methods particularly designed for black-box optimization problems. In this paper, we present a class of direct search methods for simulation optimization problems with stochastic noise. The optimization problem is approximated using a sample average approximation scheme. We propose an adaptive sampling scheme to improve the efficiency of direct search methods and prove the consistency of the solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信