{"title":"汽车电子应用中瞬态多材料水分传递模型的新方法","authors":"Daniel Markus, M. Schmidt, Karin Lunz, U. Becker","doi":"10.1109/EUROSIME.2016.7463322","DOIUrl":null,"url":null,"abstract":"This paper analyzes moisture diffusion methods regarding their applicability under varying boundary conditions and under consideration of non-linear material properties. It is shown that commonly utilized methods are not adequate for a physically consistent treatment of multimaterial setups with non-linear saturation concentrations. In order to overcome this limitation in moisture modeling, a new method, the so called Surface Humidity Potential approach is introduced, verified, and applied to a moisture simulation of a printed circuit board subjected to an environment encountered in automotive applications. Overall, a sound foundation for moisture analysis of plastic materials encountered in electronic components is established.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A new method to model transient multi-material moisture transfer in automotive electronics applications\",\"authors\":\"Daniel Markus, M. Schmidt, Karin Lunz, U. Becker\",\"doi\":\"10.1109/EUROSIME.2016.7463322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes moisture diffusion methods regarding their applicability under varying boundary conditions and under consideration of non-linear material properties. It is shown that commonly utilized methods are not adequate for a physically consistent treatment of multimaterial setups with non-linear saturation concentrations. In order to overcome this limitation in moisture modeling, a new method, the so called Surface Humidity Potential approach is introduced, verified, and applied to a moisture simulation of a printed circuit board subjected to an environment encountered in automotive applications. Overall, a sound foundation for moisture analysis of plastic materials encountered in electronic components is established.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new method to model transient multi-material moisture transfer in automotive electronics applications
This paper analyzes moisture diffusion methods regarding their applicability under varying boundary conditions and under consideration of non-linear material properties. It is shown that commonly utilized methods are not adequate for a physically consistent treatment of multimaterial setups with non-linear saturation concentrations. In order to overcome this limitation in moisture modeling, a new method, the so called Surface Humidity Potential approach is introduced, verified, and applied to a moisture simulation of a printed circuit board subjected to an environment encountered in automotive applications. Overall, a sound foundation for moisture analysis of plastic materials encountered in electronic components is established.