解码算法的能量

Christopher G. Blake, F. Kschischang
{"title":"解码算法的能量","authors":"Christopher G. Blake, F. Kschischang","doi":"10.1109/CWIT.2013.6621582","DOIUrl":null,"url":null,"abstract":"A standard model for the energy of a computation was developed by Thompson, which relates the energy of a computation to the product of the area a circuit and the number of clock cycles needed to carry out the computation. We show that for any circuit implemented this way, using any algorithm that performs decoding of a codeword passed through a binary symmetric channel, as the block length approaches infinity either (a) the probability of block error approaches 1 or (b) the energy of the computation scales at least as equation. This implies that the energy of successful decoding, per decoded bit, must scale at least as equation.","PeriodicalId":398936,"journal":{"name":"2013 13th Canadian Workshop on Information Theory","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Energy of decoding algorithms\",\"authors\":\"Christopher G. Blake, F. Kschischang\",\"doi\":\"10.1109/CWIT.2013.6621582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A standard model for the energy of a computation was developed by Thompson, which relates the energy of a computation to the product of the area a circuit and the number of clock cycles needed to carry out the computation. We show that for any circuit implemented this way, using any algorithm that performs decoding of a codeword passed through a binary symmetric channel, as the block length approaches infinity either (a) the probability of block error approaches 1 or (b) the energy of the computation scales at least as equation. This implies that the energy of successful decoding, per decoded bit, must scale at least as equation.\",\"PeriodicalId\":398936,\"journal\":{\"name\":\"2013 13th Canadian Workshop on Information Theory\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th Canadian Workshop on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CWIT.2013.6621582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th Canadian Workshop on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2013.6621582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

汤普森建立了一个计算能量的标准模型,将计算能量与电路面积和执行计算所需的时钟周期数的乘积联系起来。我们表明,对于以这种方式实现的任何电路,使用任何算法对通过二进制对称通道的码字进行解码,当块长度接近无穷大时,(a)块错误的概率接近1或(b)计算能量至少作为方程缩放。这意味着成功解码的能量,每个解码位,必须至少按等式缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy of decoding algorithms
A standard model for the energy of a computation was developed by Thompson, which relates the energy of a computation to the product of the area a circuit and the number of clock cycles needed to carry out the computation. We show that for any circuit implemented this way, using any algorithm that performs decoding of a codeword passed through a binary symmetric channel, as the block length approaches infinity either (a) the probability of block error approaches 1 or (b) the energy of the computation scales at least as equation. This implies that the energy of successful decoding, per decoded bit, must scale at least as equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信