{"title":"一种基于DFSSM的Web文本聚类算法","authors":"Bingru Yang, Zefeng Song, Yinglong Wang, Wei Song","doi":"10.1109/ISECS.2008.110","DOIUrl":null,"url":null,"abstract":"A new algorithm of Web text clustering mining is presented, which is based on the Discovery Feature Sub-space Model (DFSSM). This algorithm includes the training stage of SOM and the clustering stage, which characterizes self-stability and powerful antinoise ability. It can distinguishes the most meaningful features from the Concept Space without the evaluation function. we have applied the algorithm to the modern long-distance education. Through the analysis of the experimental results, it is obvious that this algorithm can effective help users to get valuable information from WWW quickly.","PeriodicalId":144075,"journal":{"name":"2008 International Symposium on Electronic Commerce and Security","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Web Text Clustering Algorithm Based on DFSSM\",\"authors\":\"Bingru Yang, Zefeng Song, Yinglong Wang, Wei Song\",\"doi\":\"10.1109/ISECS.2008.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm of Web text clustering mining is presented, which is based on the Discovery Feature Sub-space Model (DFSSM). This algorithm includes the training stage of SOM and the clustering stage, which characterizes self-stability and powerful antinoise ability. It can distinguishes the most meaningful features from the Concept Space without the evaluation function. we have applied the algorithm to the modern long-distance education. Through the analysis of the experimental results, it is obvious that this algorithm can effective help users to get valuable information from WWW quickly.\",\"PeriodicalId\":144075,\"journal\":{\"name\":\"2008 International Symposium on Electronic Commerce and Security\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Electronic Commerce and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISECS.2008.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Electronic Commerce and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISECS.2008.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Web Text Clustering Algorithm Based on DFSSM
A new algorithm of Web text clustering mining is presented, which is based on the Discovery Feature Sub-space Model (DFSSM). This algorithm includes the training stage of SOM and the clustering stage, which characterizes self-stability and powerful antinoise ability. It can distinguishes the most meaningful features from the Concept Space without the evaluation function. we have applied the algorithm to the modern long-distance education. Through the analysis of the experimental results, it is obvious that this algorithm can effective help users to get valuable information from WWW quickly.