一种基于DFSSM的Web文本聚类算法

Bingru Yang, Zefeng Song, Yinglong Wang, Wei Song
{"title":"一种基于DFSSM的Web文本聚类算法","authors":"Bingru Yang, Zefeng Song, Yinglong Wang, Wei Song","doi":"10.1109/ISECS.2008.110","DOIUrl":null,"url":null,"abstract":"A new algorithm of Web text clustering mining is presented, which is based on the Discovery Feature Sub-space Model (DFSSM). This algorithm includes the training stage of SOM and the clustering stage, which characterizes self-stability and powerful antinoise ability. It can distinguishes the most meaningful features from the Concept Space without the evaluation function. we have applied the algorithm to the modern long-distance education. Through the analysis of the experimental results, it is obvious that this algorithm can effective help users to get valuable information from WWW quickly.","PeriodicalId":144075,"journal":{"name":"2008 International Symposium on Electronic Commerce and Security","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Web Text Clustering Algorithm Based on DFSSM\",\"authors\":\"Bingru Yang, Zefeng Song, Yinglong Wang, Wei Song\",\"doi\":\"10.1109/ISECS.2008.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm of Web text clustering mining is presented, which is based on the Discovery Feature Sub-space Model (DFSSM). This algorithm includes the training stage of SOM and the clustering stage, which characterizes self-stability and powerful antinoise ability. It can distinguishes the most meaningful features from the Concept Space without the evaluation function. we have applied the algorithm to the modern long-distance education. Through the analysis of the experimental results, it is obvious that this algorithm can effective help users to get valuable information from WWW quickly.\",\"PeriodicalId\":144075,\"journal\":{\"name\":\"2008 International Symposium on Electronic Commerce and Security\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Electronic Commerce and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISECS.2008.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Electronic Commerce and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISECS.2008.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于发现特征子空间模型(DFSSM)的Web文本聚类挖掘算法。该算法包括SOM的训练阶段和聚类阶段,具有自稳定性和强大的抗噪能力。它可以在没有评价函数的情况下将最有意义的特征与概念空间区分开来。将该算法应用到现代远程教育中。通过对实验结果的分析,可以明显看出该算法可以有效地帮助用户快速从WWW中获取有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Web Text Clustering Algorithm Based on DFSSM
A new algorithm of Web text clustering mining is presented, which is based on the Discovery Feature Sub-space Model (DFSSM). This algorithm includes the training stage of SOM and the clustering stage, which characterizes self-stability and powerful antinoise ability. It can distinguishes the most meaningful features from the Concept Space without the evaluation function. we have applied the algorithm to the modern long-distance education. Through the analysis of the experimental results, it is obvious that this algorithm can effective help users to get valuable information from WWW quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信