使用自动拓扑结构的视觉自定位

P. Baldassarri, P. Puliti, A. Montesanto, G. Tascini
{"title":"使用自动拓扑结构的视觉自定位","authors":"P. Baldassarri, P. Puliti, A. Montesanto, G. Tascini","doi":"10.1109/ICIAP.2003.1234077","DOIUrl":null,"url":null,"abstract":"The paper proposes a machine learning method for self-localising a mobile agent, using the images supplied by a single omni-directional camera. The images acquired by the camera may be viewed as an implicit topological representation of the environment. The environment is a priori unknown and the topological representation is derived by unsupervised neural network architecture. The architecture includes a self-organising neural network, and is constituted by a growing neural gas, which is well known for its topology preserving quality. The growth depends on the topology that is not a priori defined, and on the need of discovering it, by the neural network, during the learning. The implemented system is able to recognise correctly the input frames and to reconstruct a topological map of the environment. Each node of the neural network identifies a single zone of the environment and the connections between the nodes correspond to the real space connections in the environment.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual self-localisation using automatic topology construction\",\"authors\":\"P. Baldassarri, P. Puliti, A. Montesanto, G. Tascini\",\"doi\":\"10.1109/ICIAP.2003.1234077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a machine learning method for self-localising a mobile agent, using the images supplied by a single omni-directional camera. The images acquired by the camera may be viewed as an implicit topological representation of the environment. The environment is a priori unknown and the topological representation is derived by unsupervised neural network architecture. The architecture includes a self-organising neural network, and is constituted by a growing neural gas, which is well known for its topology preserving quality. The growth depends on the topology that is not a priori defined, and on the need of discovering it, by the neural network, during the learning. The implemented system is able to recognise correctly the input frames and to reconstruct a topological map of the environment. Each node of the neural network identifies a single zone of the environment and the connections between the nodes correspond to the real space connections in the environment.\",\"PeriodicalId\":218076,\"journal\":{\"name\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2003.1234077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用单个全向相机提供的图像进行移动智能体自定位的机器学习方法。摄像机所获得的图像可以看作是环境的隐式拓扑表示。环境是先验未知的,拓扑表示是由无监督神经网络架构导出的。该体系结构包括一个自组织神经网络,由一个生长的神经气体组成,该神经气体以其拓扑保持性而闻名。增长取决于不是先验定义的拓扑,以及神经网络在学习过程中发现拓扑的需要。所实现的系统能够正确识别输入帧并重建环境的拓扑图。神经网络的每个节点识别环境的单个区域,节点之间的连接对应于环境中的真实空间连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual self-localisation using automatic topology construction
The paper proposes a machine learning method for self-localising a mobile agent, using the images supplied by a single omni-directional camera. The images acquired by the camera may be viewed as an implicit topological representation of the environment. The environment is a priori unknown and the topological representation is derived by unsupervised neural network architecture. The architecture includes a self-organising neural network, and is constituted by a growing neural gas, which is well known for its topology preserving quality. The growth depends on the topology that is not a priori defined, and on the need of discovering it, by the neural network, during the learning. The implemented system is able to recognise correctly the input frames and to reconstruct a topological map of the environment. Each node of the neural network identifies a single zone of the environment and the connections between the nodes correspond to the real space connections in the environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信