P. Baldassarri, P. Puliti, A. Montesanto, G. Tascini
{"title":"使用自动拓扑结构的视觉自定位","authors":"P. Baldassarri, P. Puliti, A. Montesanto, G. Tascini","doi":"10.1109/ICIAP.2003.1234077","DOIUrl":null,"url":null,"abstract":"The paper proposes a machine learning method for self-localising a mobile agent, using the images supplied by a single omni-directional camera. The images acquired by the camera may be viewed as an implicit topological representation of the environment. The environment is a priori unknown and the topological representation is derived by unsupervised neural network architecture. The architecture includes a self-organising neural network, and is constituted by a growing neural gas, which is well known for its topology preserving quality. The growth depends on the topology that is not a priori defined, and on the need of discovering it, by the neural network, during the learning. The implemented system is able to recognise correctly the input frames and to reconstruct a topological map of the environment. Each node of the neural network identifies a single zone of the environment and the connections between the nodes correspond to the real space connections in the environment.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual self-localisation using automatic topology construction\",\"authors\":\"P. Baldassarri, P. Puliti, A. Montesanto, G. Tascini\",\"doi\":\"10.1109/ICIAP.2003.1234077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a machine learning method for self-localising a mobile agent, using the images supplied by a single omni-directional camera. The images acquired by the camera may be viewed as an implicit topological representation of the environment. The environment is a priori unknown and the topological representation is derived by unsupervised neural network architecture. The architecture includes a self-organising neural network, and is constituted by a growing neural gas, which is well known for its topology preserving quality. The growth depends on the topology that is not a priori defined, and on the need of discovering it, by the neural network, during the learning. The implemented system is able to recognise correctly the input frames and to reconstruct a topological map of the environment. Each node of the neural network identifies a single zone of the environment and the connections between the nodes correspond to the real space connections in the environment.\",\"PeriodicalId\":218076,\"journal\":{\"name\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2003.1234077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual self-localisation using automatic topology construction
The paper proposes a machine learning method for self-localising a mobile agent, using the images supplied by a single omni-directional camera. The images acquired by the camera may be viewed as an implicit topological representation of the environment. The environment is a priori unknown and the topological representation is derived by unsupervised neural network architecture. The architecture includes a self-organising neural network, and is constituted by a growing neural gas, which is well known for its topology preserving quality. The growth depends on the topology that is not a priori defined, and on the need of discovering it, by the neural network, during the learning. The implemented system is able to recognise correctly the input frames and to reconstruct a topological map of the environment. Each node of the neural network identifies a single zone of the environment and the connections between the nodes correspond to the real space connections in the environment.