关于杜宾斯基非线性紧嵌入定理的几点思考

J. Barrett, E. Suli
{"title":"关于杜宾斯基非线性紧嵌入定理的几点思考","authors":"J. Barrett, E. Suli","doi":"10.2298/PIM1205095B","DOIUrl":null,"url":null,"abstract":"We present an overview of a result by Yuliĭ Andreevich Dubinskiĭ [Mat. Sb. 67 \n (109) (1965); translated in Amer. Math. Soc. Transl. (2) 67 (1968)], \n concerning the compact embedding of a seminormed set in Lp(0, T;A0), where A0 \n is a Banach space and p 2 [1,1]; we establish a variant of Dubinskiĭ’s \n theorem, where a seminormed nonnegative cone is used instead of a seminormed \n set; and we explore the connections of these results with a nonlinear compact \n embedding theorem due to Emmanuel Maitre [Int. J. Math. Math. Sci. 27 \n (2003)].","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Reflections on Dubinskiĭ’s nonlinear compact embedding theorem\",\"authors\":\"J. Barrett, E. Suli\",\"doi\":\"10.2298/PIM1205095B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an overview of a result by Yuliĭ Andreevich Dubinskiĭ [Mat. Sb. 67 \\n (109) (1965); translated in Amer. Math. Soc. Transl. (2) 67 (1968)], \\n concerning the compact embedding of a seminormed set in Lp(0, T;A0), where A0 \\n is a Banach space and p 2 [1,1]; we establish a variant of Dubinskiĭ’s \\n theorem, where a seminormed nonnegative cone is used instead of a seminormed \\n set; and we explore the connections of these results with a nonlinear compact \\n embedding theorem due to Emmanuel Maitre [Int. J. Math. Math. Sci. 27 \\n (2003)].\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1205095B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1205095B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们概述了yulik Andreevich dubinski的一个结果[Mat. Sb. 67 (109) (1965);译自美国。数学。Soc。Transl。(2) 67(1968)],关于半成形集合在Lp(0, T;A0)中的紧嵌入,其中A0是Banach空间,p 2 [1,1];建立了dubinski定理的一个变体,其中用半形非负锥代替半形集;并探讨了这些结果与Emmanuel Maitre [Int]的非线性紧嵌入定理之间的联系。j .数学。数学。科学27(2003)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflections on Dubinskiĭ’s nonlinear compact embedding theorem
We present an overview of a result by Yuliĭ Andreevich Dubinskiĭ [Mat. Sb. 67 (109) (1965); translated in Amer. Math. Soc. Transl. (2) 67 (1968)], concerning the compact embedding of a seminormed set in Lp(0, T;A0), where A0 is a Banach space and p 2 [1,1]; we establish a variant of Dubinskiĭ’s theorem, where a seminormed nonnegative cone is used instead of a seminormed set; and we explore the connections of these results with a nonlinear compact embedding theorem due to Emmanuel Maitre [Int. J. Math. Math. Sci. 27 (2003)].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信