{"title":"关于杜宾斯基非线性紧嵌入定理的几点思考","authors":"J. Barrett, E. Suli","doi":"10.2298/PIM1205095B","DOIUrl":null,"url":null,"abstract":"We present an overview of a result by Yuliĭ Andreevich Dubinskiĭ [Mat. Sb. 67 \n (109) (1965); translated in Amer. Math. Soc. Transl. (2) 67 (1968)], \n concerning the compact embedding of a seminormed set in Lp(0, T;A0), where A0 \n is a Banach space and p 2 [1,1]; we establish a variant of Dubinskiĭ’s \n theorem, where a seminormed nonnegative cone is used instead of a seminormed \n set; and we explore the connections of these results with a nonlinear compact \n embedding theorem due to Emmanuel Maitre [Int. J. Math. Math. Sci. 27 \n (2003)].","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Reflections on Dubinskiĭ’s nonlinear compact embedding theorem\",\"authors\":\"J. Barrett, E. Suli\",\"doi\":\"10.2298/PIM1205095B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an overview of a result by Yuliĭ Andreevich Dubinskiĭ [Mat. Sb. 67 \\n (109) (1965); translated in Amer. Math. Soc. Transl. (2) 67 (1968)], \\n concerning the compact embedding of a seminormed set in Lp(0, T;A0), where A0 \\n is a Banach space and p 2 [1,1]; we establish a variant of Dubinskiĭ’s \\n theorem, where a seminormed nonnegative cone is used instead of a seminormed \\n set; and we explore the connections of these results with a nonlinear compact \\n embedding theorem due to Emmanuel Maitre [Int. J. Math. Math. Sci. 27 \\n (2003)].\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1205095B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1205095B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reflections on Dubinskiĭ’s nonlinear compact embedding theorem
We present an overview of a result by Yuliĭ Andreevich Dubinskiĭ [Mat. Sb. 67
(109) (1965); translated in Amer. Math. Soc. Transl. (2) 67 (1968)],
concerning the compact embedding of a seminormed set in Lp(0, T;A0), where A0
is a Banach space and p 2 [1,1]; we establish a variant of Dubinskiĭ’s
theorem, where a seminormed nonnegative cone is used instead of a seminormed
set; and we explore the connections of these results with a nonlinear compact
embedding theorem due to Emmanuel Maitre [Int. J. Math. Math. Sci. 27
(2003)].