两个独立复高斯矢量间相位角分布的von mises近似

N. Letzepis
{"title":"两个独立复高斯矢量间相位角分布的von mises近似","authors":"N. Letzepis","doi":"10.1109/ICASSP.2015.7178571","DOIUrl":null,"url":null,"abstract":"This paper analyses the von Mises approximation for the distribution of the phase angle between two independent complex Gaussian vectors. By upper bounding the Kullback-Leibler divergence, it is shown that when their circular means and variances coincide, the distribution converges to a von Mises distribution both in the low and high signal-to-noise ratio regimes.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the von mises approximation for the distribution of the phase angle between two independent complex Gaussian vectors\",\"authors\":\"N. Letzepis\",\"doi\":\"10.1109/ICASSP.2015.7178571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses the von Mises approximation for the distribution of the phase angle between two independent complex Gaussian vectors. By upper bounding the Kullback-Leibler divergence, it is shown that when their circular means and variances coincide, the distribution converges to a von Mises distribution both in the low and high signal-to-noise ratio regimes.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了两个独立复高斯矢量之间的相位角分布的von Mises近似。通过Kullback-Leibler散度的上界,表明当它们的圆形均值和方差重合时,分布在低信噪比和高信噪比情况下都收敛于von Mises分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the von mises approximation for the distribution of the phase angle between two independent complex Gaussian vectors
This paper analyses the von Mises approximation for the distribution of the phase angle between two independent complex Gaussian vectors. By upper bounding the Kullback-Leibler divergence, it is shown that when their circular means and variances coincide, the distribution converges to a von Mises distribution both in the low and high signal-to-noise ratio regimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信