用局部模型预测边界条件下的股票市场

Gianluca Bontempi, Edy Bertolissi, M. Birattari
{"title":"用局部模型预测边界条件下的股票市场","authors":"Gianluca Bontempi, Edy Bertolissi, M. Birattari","doi":"10.1109/CIFER.2000.844616","DOIUrl":null,"url":null,"abstract":"This paper adopts the idea of regularity in the boundaries of financial time series in order to fit forecasting models which are able to outperform random walk predictions. In particular we propose the adoption of a local learning technique, called lazy learning, in order to perform model estimation and prediction in extreme conditions. The lazy learning method is proposed to return predictions in extreme conditions of trends of the Italian stock market index. The experiments show that in boundary conditions the technique is able to outperform a random predictor and to return a significant rate of accuracy.","PeriodicalId":308591,"journal":{"name":"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting stock markets in boundary conditions with local models\",\"authors\":\"Gianluca Bontempi, Edy Bertolissi, M. Birattari\",\"doi\":\"10.1109/CIFER.2000.844616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper adopts the idea of regularity in the boundaries of financial time series in order to fit forecasting models which are able to outperform random walk predictions. In particular we propose the adoption of a local learning technique, called lazy learning, in order to perform model estimation and prediction in extreme conditions. The lazy learning method is proposed to return predictions in extreme conditions of trends of the Italian stock market index. The experiments show that in boundary conditions the technique is able to outperform a random predictor and to return a significant rate of accuracy.\",\"PeriodicalId\":308591,\"journal\":{\"name\":\"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIFER.2000.844616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.2000.844616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用金融时间序列边界的正则性思想,拟合出优于随机游走预测的预测模型。我们特别建议采用一种局部学习技术,称为懒惰学习,以便在极端条件下进行模型估计和预测。提出了惰性学习方法,在极端情况下对意大利股市指数的趋势进行预测。实验表明,在边界条件下,该技术能够优于随机预测器,并返回显着的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting stock markets in boundary conditions with local models
This paper adopts the idea of regularity in the boundaries of financial time series in order to fit forecasting models which are able to outperform random walk predictions. In particular we propose the adoption of a local learning technique, called lazy learning, in order to perform model estimation and prediction in extreme conditions. The lazy learning method is proposed to return predictions in extreme conditions of trends of the Italian stock market index. The experiments show that in boundary conditions the technique is able to outperform a random predictor and to return a significant rate of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信