基于gpu的卷积神经网络性能分析

Xiaqing Li, Guangyan Zhang, H. Howie Huang, Zhufan Wang, Weimin Zheng
{"title":"基于gpu的卷积神经网络性能分析","authors":"Xiaqing Li, Guangyan Zhang, H. Howie Huang, Zhufan Wang, Weimin Zheng","doi":"10.1109/ICPP.2016.15","DOIUrl":null,"url":null,"abstract":"As one of the most important deep learning models, convolutional neural networks (CNNs) have achieved great successes in a number of applications such as image classification, speech recognition and nature language understanding. Training CNNs on large data sets is computationally expensive, leading to a flurry of research and development of open-source parallel implementations on GPUs. However, few studies have been performed to evaluate the performance characteristics of those implementations. In this paper, we conduct a comprehensive comparison of these implementations over a wide range of parameter configurations, investigate potential performance bottlenecks and point out a number of opportunities for further optimization.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Performance Analysis of GPU-Based Convolutional Neural Networks\",\"authors\":\"Xiaqing Li, Guangyan Zhang, H. Howie Huang, Zhufan Wang, Weimin Zheng\",\"doi\":\"10.1109/ICPP.2016.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the most important deep learning models, convolutional neural networks (CNNs) have achieved great successes in a number of applications such as image classification, speech recognition and nature language understanding. Training CNNs on large data sets is computationally expensive, leading to a flurry of research and development of open-source parallel implementations on GPUs. However, few studies have been performed to evaluate the performance characteristics of those implementations. In this paper, we conduct a comprehensive comparison of these implementations over a wide range of parameter configurations, investigate potential performance bottlenecks and point out a number of opportunities for further optimization.\",\"PeriodicalId\":409991,\"journal\":{\"name\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2016.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

卷积神经网络(cnn)作为最重要的深度学习模型之一,在图像分类、语音识别和自然语言理解等众多应用中取得了巨大的成功。在大型数据集上训练cnn在计算上是昂贵的,这导致了gpu上开源并行实现的研究和开发热潮。然而,很少有研究对这些实现的性能特征进行评估。在本文中,我们对这些实现进行了广泛的参数配置的全面比较,研究了潜在的性能瓶颈,并指出了一些进一步优化的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of GPU-Based Convolutional Neural Networks
As one of the most important deep learning models, convolutional neural networks (CNNs) have achieved great successes in a number of applications such as image classification, speech recognition and nature language understanding. Training CNNs on large data sets is computationally expensive, leading to a flurry of research and development of open-source parallel implementations on GPUs. However, few studies have been performed to evaluate the performance characteristics of those implementations. In this paper, we conduct a comprehensive comparison of these implementations over a wide range of parameter configurations, investigate potential performance bottlenecks and point out a number of opportunities for further optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信