Samiksha Soni, N. Londhe, RITESH RAJ, Rajendra S. Sonawane
{"title":"TransUnet用于银屑病病灶分割","authors":"Samiksha Soni, N. Londhe, RITESH RAJ, Rajendra S. Sonawane","doi":"10.1109/IBSSC56953.2022.10037394","DOIUrl":null,"url":null,"abstract":"Outstanding performance of the transformer-based model in the field of natural language processing has piqued the interest of researchers in investigating these techniques for computer vision. And the most popular UNet model is considered a major player in the field of image segmentation. Thus, in this paper, we have proposed the transformer-based UNet model for the complex task of psoriasis lesion segmentation from raw color images. One of the major challenges for our segmentation task is the scarcity of datasets and to overcome this challenge we have exploited the EfficientNetB1 transfer learned model as a backbone for our segmentation model. The proposed model is evaluated for the 70:30 hold-out data division technique and the segmentation performance is evaluated using the Dice Score (DS) and Jaccard Index (JI). The value of DS and JI obtained for the intended task are 0.9571 and 0.9201 respectively with the proposed model. Comparative analysis with different derivatives of the UNet model and state-of-the-art literary work shows the better performance of our proposed model.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TransUnet for psoriasis lesion segmentation\",\"authors\":\"Samiksha Soni, N. Londhe, RITESH RAJ, Rajendra S. Sonawane\",\"doi\":\"10.1109/IBSSC56953.2022.10037394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outstanding performance of the transformer-based model in the field of natural language processing has piqued the interest of researchers in investigating these techniques for computer vision. And the most popular UNet model is considered a major player in the field of image segmentation. Thus, in this paper, we have proposed the transformer-based UNet model for the complex task of psoriasis lesion segmentation from raw color images. One of the major challenges for our segmentation task is the scarcity of datasets and to overcome this challenge we have exploited the EfficientNetB1 transfer learned model as a backbone for our segmentation model. The proposed model is evaluated for the 70:30 hold-out data division technique and the segmentation performance is evaluated using the Dice Score (DS) and Jaccard Index (JI). The value of DS and JI obtained for the intended task are 0.9571 and 0.9201 respectively with the proposed model. Comparative analysis with different derivatives of the UNet model and state-of-the-art literary work shows the better performance of our proposed model.\",\"PeriodicalId\":426897,\"journal\":{\"name\":\"2022 IEEE Bombay Section Signature Conference (IBSSC)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Bombay Section Signature Conference (IBSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBSSC56953.2022.10037394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
基于变压器的模型在自然语言处理领域的杰出表现引起了研究人员对这些技术在计算机视觉中的研究兴趣。其中最流行的UNet模型被认为是图像分割领域的主要参与者。因此,在本文中,我们提出了基于变换的UNet模型,用于从原始彩色图像中分割银屑病病变的复杂任务。我们分割任务的主要挑战之一是数据集的稀缺性,为了克服这一挑战,我们利用了EfficientNetB1迁移学习模型作为分割模型的主干。采用70:30 hold- hold数据分割技术对该模型进行了评价,并使用Dice Score (DS)和Jaccard Index (JI)对该模型的分割性能进行了评价。使用所提出的模型得到的预期任务的DS和JI分别为0.9571和0.9201。与UNet模型的不同衍生品和最新文学作品的比较分析表明,我们提出的模型具有更好的性能。
Outstanding performance of the transformer-based model in the field of natural language processing has piqued the interest of researchers in investigating these techniques for computer vision. And the most popular UNet model is considered a major player in the field of image segmentation. Thus, in this paper, we have proposed the transformer-based UNet model for the complex task of psoriasis lesion segmentation from raw color images. One of the major challenges for our segmentation task is the scarcity of datasets and to overcome this challenge we have exploited the EfficientNetB1 transfer learned model as a backbone for our segmentation model. The proposed model is evaluated for the 70:30 hold-out data division technique and the segmentation performance is evaluated using the Dice Score (DS) and Jaccard Index (JI). The value of DS and JI obtained for the intended task are 0.9571 and 0.9201 respectively with the proposed model. Comparative analysis with different derivatives of the UNet model and state-of-the-art literary work shows the better performance of our proposed model.