数学形态学在距离图像中的一些应用

T. R. Esselman, J. Verly
{"title":"数学形态学在距离图像中的一些应用","authors":"T. R. Esselman, J. Verly","doi":"10.1109/ICASSP.1987.1169668","DOIUrl":null,"url":null,"abstract":"Although little known, mathematical morphology (MM) offers great potential in the areas of image enhancement, feature extraction, and object recognition. MM has the intrinsic ability to quantitatively analyze object shapes in both 2 and 3 dimensions. Using MM to extract features and recognize objects in range imagery seems particularly appropriate since range data is a natural source of shape information. We present several experimental results of applying MM techniques to real and synthetic range imagery, both for noise removal and feature extraction.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Some applications of mathematical morphology to range imagery\",\"authors\":\"T. R. Esselman, J. Verly\",\"doi\":\"10.1109/ICASSP.1987.1169668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although little known, mathematical morphology (MM) offers great potential in the areas of image enhancement, feature extraction, and object recognition. MM has the intrinsic ability to quantitatively analyze object shapes in both 2 and 3 dimensions. Using MM to extract features and recognize objects in range imagery seems particularly appropriate since range data is a natural source of shape information. We present several experimental results of applying MM techniques to real and synthetic range imagery, both for noise removal and feature extraction.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

尽管鲜为人知,数学形态学(MM)在图像增强、特征提取和对象识别领域提供了巨大的潜力。MM具有定量分析二维和三维物体形状的内在能力。使用MM提取特征和识别距离图像中的物体似乎特别合适,因为距离数据是形状信息的自然来源。我们介绍了将MM技术应用于真实和合成距离图像的几个实验结果,包括噪声去除和特征提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some applications of mathematical morphology to range imagery
Although little known, mathematical morphology (MM) offers great potential in the areas of image enhancement, feature extraction, and object recognition. MM has the intrinsic ability to quantitatively analyze object shapes in both 2 and 3 dimensions. Using MM to extract features and recognize objects in range imagery seems particularly appropriate since range data is a natural source of shape information. We present several experimental results of applying MM techniques to real and synthetic range imagery, both for noise removal and feature extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信