基于边缘、区域和先验信息组合的水平集细胞图像分割方法

Yiyi Chen, Hanxu Sun, Huihua Yang, Xipeng Pan
{"title":"基于边缘、区域和先验信息组合的水平集细胞图像分割方法","authors":"Yiyi Chen, Hanxu Sun, Huihua Yang, Xipeng Pan","doi":"10.1109/ICSAI.2017.8248477","DOIUrl":null,"url":null,"abstract":"Inhomogeneity of intensity often appear in the cell images and hence image segmentation may face lots of problems. For the purpose of solving the problems brought about by cell images with inhomogeneity intensity, low contrast and edge blurring, this paper presents a new level set method. Our model combines an external energy function with a regular term. The former combines the prior information with edge gradient and region information of cell images, and the latter makes our function approach to a distance function with a sign. Due to this internal energy, our model completely doesn't need to reinitialize. Experiments on mammary cell images show that our model has good segmentation performance on mammary cell images which are superior to watershed and clustering, DRLSE, Yang et al. segmentation methods.","PeriodicalId":285726,"journal":{"name":"2017 4th International Conference on Systems and Informatics (ICSAI)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Level set method of cell image segmentation based on combinations of edge, region and prior information\",\"authors\":\"Yiyi Chen, Hanxu Sun, Huihua Yang, Xipeng Pan\",\"doi\":\"10.1109/ICSAI.2017.8248477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inhomogeneity of intensity often appear in the cell images and hence image segmentation may face lots of problems. For the purpose of solving the problems brought about by cell images with inhomogeneity intensity, low contrast and edge blurring, this paper presents a new level set method. Our model combines an external energy function with a regular term. The former combines the prior information with edge gradient and region information of cell images, and the latter makes our function approach to a distance function with a sign. Due to this internal energy, our model completely doesn't need to reinitialize. Experiments on mammary cell images show that our model has good segmentation performance on mammary cell images which are superior to watershed and clustering, DRLSE, Yang et al. segmentation methods.\",\"PeriodicalId\":285726,\"journal\":{\"name\":\"2017 4th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2017.8248477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2017.8248477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

细胞图像中经常出现强度的不均匀性,使得图像分割面临许多问题。为了解决细胞图像强度不均匀、对比度低、边缘模糊等问题,提出了一种新的水平集方法。我们的模型结合了一个外部能量函数和一个正则项。前者将先验信息与细胞图像的边缘梯度和区域信息相结合,后者将我们的函数逼近为带符号的距离函数。由于这个内能,我们的模型完全不需要重新初始化。对乳腺细胞图像的实验表明,我们的模型对乳腺细胞图像具有良好的分割性能,优于分水岭和聚类、DRLSE、Yang等分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Level set method of cell image segmentation based on combinations of edge, region and prior information
Inhomogeneity of intensity often appear in the cell images and hence image segmentation may face lots of problems. For the purpose of solving the problems brought about by cell images with inhomogeneity intensity, low contrast and edge blurring, this paper presents a new level set method. Our model combines an external energy function with a regular term. The former combines the prior information with edge gradient and region information of cell images, and the latter makes our function approach to a distance function with a sign. Due to this internal energy, our model completely doesn't need to reinitialize. Experiments on mammary cell images show that our model has good segmentation performance on mammary cell images which are superior to watershed and clustering, DRLSE, Yang et al. segmentation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信