{"title":"论aluge变换的本质最大值范围","authors":"O. S. Cyprian, L. Chikamai, S. Aywa","doi":"10.18052/www.scipress.com/ijpms.20.1","DOIUrl":null,"url":null,"abstract":"This paper focuses on the properties of the essential maximal numerical range of Aluthgetransform T. For instance, among other results, we show that the essential maximal numerical rangeof Aluthge transform is nonempty and convex. Further, we prove that the essential maximal numericalrange of Aluthge transform e T is contained in the essential maximal numerical range of T. This studyis therefore an extention of the research on Aluthge transform which was begun by Aluthge in hisstudy of p−hyponormal operators.","PeriodicalId":294005,"journal":{"name":"International Journal of Pure Mathematical Sciences","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on Essential Maximal Numerical Range of Aluthge Transform\",\"authors\":\"O. S. Cyprian, L. Chikamai, S. Aywa\",\"doi\":\"10.18052/www.scipress.com/ijpms.20.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the properties of the essential maximal numerical range of Aluthgetransform T. For instance, among other results, we show that the essential maximal numerical rangeof Aluthge transform is nonempty and convex. Further, we prove that the essential maximal numericalrange of Aluthge transform e T is contained in the essential maximal numerical range of T. This studyis therefore an extention of the research on Aluthge transform which was begun by Aluthge in hisstudy of p−hyponormal operators.\",\"PeriodicalId\":294005,\"journal\":{\"name\":\"International Journal of Pure Mathematical Sciences\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pure Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/www.scipress.com/ijpms.20.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pure Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/www.scipress.com/ijpms.20.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remarks on Essential Maximal Numerical Range of Aluthge Transform
This paper focuses on the properties of the essential maximal numerical range of Aluthgetransform T. For instance, among other results, we show that the essential maximal numerical rangeof Aluthge transform is nonempty and convex. Further, we prove that the essential maximal numericalrange of Aluthge transform e T is contained in the essential maximal numerical range of T. This studyis therefore an extention of the research on Aluthge transform which was begun by Aluthge in hisstudy of p−hyponormal operators.