高光谱图像数据集的无监督聚类方法评价

Wei Zhang, Z. Lian, Chanying Huang
{"title":"高光谱图像数据集的无监督聚类方法评价","authors":"Wei Zhang, Z. Lian, Chanying Huang","doi":"10.1109/PIC.2018.8706315","DOIUrl":null,"url":null,"abstract":"Classification and clustering of hyper spectral remote sensing images are keys to extract abundant information. Researchers have developed several popular clustering algorithms in the past years, and many learning based methods have been developed nowadays. Conventional clustering algorithms showed good performance with low dimensional data, like RGB images and database records. In hyperspectral image clustering, methods are usually composed of two steps, feature extraction and conventional clustering. This paper attempted to evaluate performances of conventional clustering methods based hyperspectral images without any feature extraction step.","PeriodicalId":236106,"journal":{"name":"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Unsupervised Clustering Methods on Hyperspectral Image Data Sets\",\"authors\":\"Wei Zhang, Z. Lian, Chanying Huang\",\"doi\":\"10.1109/PIC.2018.8706315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification and clustering of hyper spectral remote sensing images are keys to extract abundant information. Researchers have developed several popular clustering algorithms in the past years, and many learning based methods have been developed nowadays. Conventional clustering algorithms showed good performance with low dimensional data, like RGB images and database records. In hyperspectral image clustering, methods are usually composed of two steps, feature extraction and conventional clustering. This paper attempted to evaluate performances of conventional clustering methods based hyperspectral images without any feature extraction step.\",\"PeriodicalId\":236106,\"journal\":{\"name\":\"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2018.8706315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2018.8706315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱遥感影像的分类与聚类是提取丰富信息的关键。在过去的几年里,研究人员已经开发了几种流行的聚类算法,并且现在已经开发了许多基于学习的方法。传统的聚类算法在处理RGB图像和数据库记录等低维数据时表现良好。在高光谱图像聚类中,聚类方法通常分为特征提取和常规聚类两个步骤。本文试图在不进行特征提取步骤的情况下,对基于高光谱图像的常规聚类方法进行性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Unsupervised Clustering Methods on Hyperspectral Image Data Sets
Classification and clustering of hyper spectral remote sensing images are keys to extract abundant information. Researchers have developed several popular clustering algorithms in the past years, and many learning based methods have been developed nowadays. Conventional clustering algorithms showed good performance with low dimensional data, like RGB images and database records. In hyperspectral image clustering, methods are usually composed of two steps, feature extraction and conventional clustering. This paper attempted to evaluate performances of conventional clustering methods based hyperspectral images without any feature extraction step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信