基于矢量量化的非参数分类器设计

Q. Xie, R. Ward, C. Laszlo
{"title":"基于矢量量化的非参数分类器设计","authors":"Q. Xie, R. Ward, C. Laszlo","doi":"10.1109/WITS.1994.513862","DOIUrl":null,"url":null,"abstract":"VQ-based method is developed as an effective data reduction technique for nonparametric classifier design. This new technique, while insisting on competitive classification accuracy, is found to overcome the usual disadvantage of traditional nonparametric classifiers of being computationally complex and of requiring large amounts of computer storage.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonparametric classifier design using vector quantization\",\"authors\":\"Q. Xie, R. Ward, C. Laszlo\",\"doi\":\"10.1109/WITS.1994.513862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"VQ-based method is developed as an effective data reduction technique for nonparametric classifier design. This new technique, while insisting on competitive classification accuracy, is found to overcome the usual disadvantage of traditional nonparametric classifiers of being computationally complex and of requiring large amounts of computer storage.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于vq的方法是一种有效的非参数分类器设计数据约简技术。这种新技术在坚持具有竞争力的分类精度的同时,克服了传统非参数分类器计算复杂和需要大量计算机存储的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric classifier design using vector quantization
VQ-based method is developed as an effective data reduction technique for nonparametric classifier design. This new technique, while insisting on competitive classification accuracy, is found to overcome the usual disadvantage of traditional nonparametric classifiers of being computationally complex and of requiring large amounts of computer storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信