二元指数和的参数估计

Benedikt Diederichs, A. Iske
{"title":"二元指数和的参数估计","authors":"Benedikt Diederichs, A. Iske","doi":"10.1109/SAMPTA.2015.7148940","DOIUrl":null,"url":null,"abstract":"Parameter estimation for exponential sums is a classical problem in signal processing. Recently, a new concept for estimating parameters of bivariate exponential sums has been proposed. The resulting method relies on parameter estimations for univariate exponential sums along several lines in the plane. These (univariate) parameter estimations are being used to first compute the projections of the unknown bivariate frequency vectors onto these lines, before they are combined to obtain estimations for the sought frequency vectors of the bivariate exponential sum. In this paper, we address theoretical questions concerning this new concept, namely (a) how many lines are needed for exact reconstruction, and (b) how to recover linear combinations of shifted positive definite functions.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Parameter estimation for bivariate exponential sums\",\"authors\":\"Benedikt Diederichs, A. Iske\",\"doi\":\"10.1109/SAMPTA.2015.7148940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter estimation for exponential sums is a classical problem in signal processing. Recently, a new concept for estimating parameters of bivariate exponential sums has been proposed. The resulting method relies on parameter estimations for univariate exponential sums along several lines in the plane. These (univariate) parameter estimations are being used to first compute the projections of the unknown bivariate frequency vectors onto these lines, before they are combined to obtain estimations for the sought frequency vectors of the bivariate exponential sum. In this paper, we address theoretical questions concerning this new concept, namely (a) how many lines are needed for exact reconstruction, and (b) how to recover linear combinations of shifted positive definite functions.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

指数和的参数估计是信号处理中的一个经典问题。近年来,提出了一种估计二元指数和参数的新概念。所得到的方法依赖于平面上沿几条直线的单变量指数和的参数估计。这些(单变量)参数估计首先用于计算未知的二元频率向量在这些线上的投影,然后将它们组合起来以获得对二元指数和的所求频率向量的估计。在本文中,我们解决了关于这个新概念的理论问题,即(a)精确重建需要多少条线,以及(b)如何恢复移位的正定函数的线性组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation for bivariate exponential sums
Parameter estimation for exponential sums is a classical problem in signal processing. Recently, a new concept for estimating parameters of bivariate exponential sums has been proposed. The resulting method relies on parameter estimations for univariate exponential sums along several lines in the plane. These (univariate) parameter estimations are being used to first compute the projections of the unknown bivariate frequency vectors onto these lines, before they are combined to obtain estimations for the sought frequency vectors of the bivariate exponential sum. In this paper, we address theoretical questions concerning this new concept, namely (a) how many lines are needed for exact reconstruction, and (b) how to recover linear combinations of shifted positive definite functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信