三角分类的Nullstellensatz

M. Bondarko, V. Sosnilo
{"title":"三角分类的Nullstellensatz","authors":"M. Bondarko, V. Sosnilo","doi":"10.1090/SPMJ/1425","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to prove the following: for a triangulated category $ \\underline{C}$ and $E\\subset \\operatorname{Obj} \\underline{C}$ there exists a cohomological functor $F$ (with values in some abelian category) such that $E$ is its set of zeros if (and only if) $E$ is closed with respect to retracts and extensions (so, we obtain a certain Nullstellensatz for functors of this type). Moreover, for $ \\underline{C}$ being an $R$-linear category (where $R$ is a commutative ring) this is also equivalent to the existence of an $R$-linear $F: \\underline{C}^{op}\\to R-\\operatorname{mod}$ satisfying this property. \nAs a corollary, we prove that an object $Y$ belongs to the corresponding \"envelope\" of some $D\\subset \\operatorname{Obj} \\underline{C}$ whenever the same is true for the images of $Y$ and $D$ in all the categories $ \\underline{C}_p$ obtained from $ \\underline{C}$ by means of \"localizing the coefficients\" at maximal ideals $p\\triangleleft R$. Moreover, to prove our theorem we develop certain new methods for relating triangulated categories to their (non-full) countable triangulated subcategories. \nThe results of this paper can be applied to the study of weight structures and of triangulated categories of motives.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Nullstellensatz for triangulated categories\",\"authors\":\"M. Bondarko, V. Sosnilo\",\"doi\":\"10.1090/SPMJ/1425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this paper is to prove the following: for a triangulated category $ \\\\underline{C}$ and $E\\\\subset \\\\operatorname{Obj} \\\\underline{C}$ there exists a cohomological functor $F$ (with values in some abelian category) such that $E$ is its set of zeros if (and only if) $E$ is closed with respect to retracts and extensions (so, we obtain a certain Nullstellensatz for functors of this type). Moreover, for $ \\\\underline{C}$ being an $R$-linear category (where $R$ is a commutative ring) this is also equivalent to the existence of an $R$-linear $F: \\\\underline{C}^{op}\\\\to R-\\\\operatorname{mod}$ satisfying this property. \\nAs a corollary, we prove that an object $Y$ belongs to the corresponding \\\"envelope\\\" of some $D\\\\subset \\\\operatorname{Obj} \\\\underline{C}$ whenever the same is true for the images of $Y$ and $D$ in all the categories $ \\\\underline{C}_p$ obtained from $ \\\\underline{C}$ by means of \\\"localizing the coefficients\\\" at maximal ideals $p\\\\triangleleft R$. Moreover, to prove our theorem we develop certain new methods for relating triangulated categories to their (non-full) countable triangulated subcategories. \\nThe results of this paper can be applied to the study of weight structures and of triangulated categories of motives.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/SPMJ/1425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/SPMJ/1425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要目的是证明:对于一个三角化范畴$ \underline{C}$和$E\子集\operatorname{Obj} \underline{C}$,存在一个上同函子$F$(其值在某个阿贝尔范畴内),使得$E$是它的零集,当(且仅当)$E$对缩回和扩展是闭的(因此,我们得到了该类函子的一定Nullstellensatz)。此外,对于$ \underline{C}$是一个$R$-线性范畴(其中$R$是一个交换环),这也等价于$R$-线性$F的存在性:\underline{C}^{op}\到R-\operatorname{mod}$满足这个性质。作为推论,我们证明了一个对象$Y$属于某个$D\子集\算子名{Obj} \underline{C}$的对应“包络”,只要$Y$和$D$在所有类别$ \underline{C}$中通过在最大理想$p\三角形左R$处“局部化系数”得到的$Y$和$D$的像都是如此。此外,为了证明我们的定理,我们发展了一些将三角化范畴与其(非满)可数三角化子范畴联系起来的新方法。本文的结果可应用于权重结构和动机三角分类的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Nullstellensatz for triangulated categories
The main goal of this paper is to prove the following: for a triangulated category $ \underline{C}$ and $E\subset \operatorname{Obj} \underline{C}$ there exists a cohomological functor $F$ (with values in some abelian category) such that $E$ is its set of zeros if (and only if) $E$ is closed with respect to retracts and extensions (so, we obtain a certain Nullstellensatz for functors of this type). Moreover, for $ \underline{C}$ being an $R$-linear category (where $R$ is a commutative ring) this is also equivalent to the existence of an $R$-linear $F: \underline{C}^{op}\to R-\operatorname{mod}$ satisfying this property. As a corollary, we prove that an object $Y$ belongs to the corresponding "envelope" of some $D\subset \operatorname{Obj} \underline{C}$ whenever the same is true for the images of $Y$ and $D$ in all the categories $ \underline{C}_p$ obtained from $ \underline{C}$ by means of "localizing the coefficients" at maximal ideals $p\triangleleft R$. Moreover, to prove our theorem we develop certain new methods for relating triangulated categories to their (non-full) countable triangulated subcategories. The results of this paper can be applied to the study of weight structures and of triangulated categories of motives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信