GP-HD:使用遗传规划生成卫生保健动态系统模型

M. Hoogendoorn, W. V. Breda, Jeroen Ruwaard
{"title":"GP-HD:使用遗传规划生成卫生保健动态系统模型","authors":"M. Hoogendoorn, W. V. Breda, Jeroen Ruwaard","doi":"10.1145/3350546.3352494","DOIUrl":null,"url":null,"abstract":"The huge wealth of data in the health domain can be exploited to create models that predict development of health states over time. Temporal learning algorithms are well suited to learn relationships between health states and make predictions about their future developments. However, these algorithms: (1) either focus on learning one generic model for all patients, providing general insights but often with limited predictive performance, or (2) learn individualized models from which it is hard to derive generic concepts. In this paper, we present a middle ground, namely parameterized dynamical systems models that are generated from data using a Genetic Programming (GP) framework. A fitness function suitable for the health domain is exploited. An evaluation of the approach in the mental health domain shows that performance of the model generated by the GP is on par with a dynamical systems model developed based on domain knowledge, significantly outperforms a generic Long Term Short Term Memory (LSTM) model and in some cases also outperforms an individualized LSTM model.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GP-HD: Using Genetic Programming to Generate Dynamical Systems Models for Health Care\",\"authors\":\"M. Hoogendoorn, W. V. Breda, Jeroen Ruwaard\",\"doi\":\"10.1145/3350546.3352494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The huge wealth of data in the health domain can be exploited to create models that predict development of health states over time. Temporal learning algorithms are well suited to learn relationships between health states and make predictions about their future developments. However, these algorithms: (1) either focus on learning one generic model for all patients, providing general insights but often with limited predictive performance, or (2) learn individualized models from which it is hard to derive generic concepts. In this paper, we present a middle ground, namely parameterized dynamical systems models that are generated from data using a Genetic Programming (GP) framework. A fitness function suitable for the health domain is exploited. An evaluation of the approach in the mental health domain shows that performance of the model generated by the GP is on par with a dynamical systems model developed based on domain knowledge, significantly outperforms a generic Long Term Short Term Memory (LSTM) model and in some cases also outperforms an individualized LSTM model.\",\"PeriodicalId\":171168,\"journal\":{\"name\":\"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3350546.3352494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可以利用健康领域的大量数据来创建预测健康状态随时间发展的模型。时间学习算法非常适合学习健康状态之间的关系,并对其未来发展做出预测。然而,这些算法:(1)要么专注于为所有患者学习一个通用模型,提供一般见解,但往往具有有限的预测性能,要么(2)学习难以从中导出通用概念的个性化模型。在本文中,我们提出了一个中间立场,即使用遗传规划(GP)框架从数据生成的参数化动力系统模型。开发了一种适合健康域的适应度函数。对该方法在心理健康领域的评估表明,GP生成的模型的性能与基于领域知识开发的动态系统模型相当,显著优于通用的长短期记忆(LSTM)模型,在某些情况下也优于个性化的LSTM模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GP-HD: Using Genetic Programming to Generate Dynamical Systems Models for Health Care
The huge wealth of data in the health domain can be exploited to create models that predict development of health states over time. Temporal learning algorithms are well suited to learn relationships between health states and make predictions about their future developments. However, these algorithms: (1) either focus on learning one generic model for all patients, providing general insights but often with limited predictive performance, or (2) learn individualized models from which it is hard to derive generic concepts. In this paper, we present a middle ground, namely parameterized dynamical systems models that are generated from data using a Genetic Programming (GP) framework. A fitness function suitable for the health domain is exploited. An evaluation of the approach in the mental health domain shows that performance of the model generated by the GP is on par with a dynamical systems model developed based on domain knowledge, significantly outperforms a generic Long Term Short Term Memory (LSTM) model and in some cases also outperforms an individualized LSTM model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信