关于复格拉斯曼流形中公制球的精确体积

Renaud-Alexandre Pitaval, Lu Wei, O. Tirkkonen, J. Corander
{"title":"关于复格拉斯曼流形中公制球的精确体积","authors":"Renaud-Alexandre Pitaval, Lu Wei, O. Tirkkonen, J. Corander","doi":"10.1109/ITWF.2015.7360783","DOIUrl":null,"url":null,"abstract":"We evaluate the volume of metric balls in complex Grassmann manifolds. The ball is defined as a set of hyperplanes of a fixed dimension with reference to a center of not necessarily the same dimension. The normalized volume of balls corresponds to the cumulative distribution of quantization error for uniformly-distributed sources, a problem notably related to rate-distortion analysis, and to packing bounds. A generalized chordal distance for unequal dimensional subspaces is used. First, a symmetry property between complementary balls is presented, extending previous small ball results to larger radius. Then, the volume is shown to be reducible to a one-dimensional integral representation, valid for any radius. Accordingly, the overall problem boils down to evaluating a determinant of a matrix of same size than the subspace dimensionality. Examples of explicit polynomial expressions emanating from the integral formulation are given.","PeriodicalId":281890,"journal":{"name":"2015 IEEE Information Theory Workshop - Fall (ITW)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the exact volume of metric balls in complex Grassmann manifolds\",\"authors\":\"Renaud-Alexandre Pitaval, Lu Wei, O. Tirkkonen, J. Corander\",\"doi\":\"10.1109/ITWF.2015.7360783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluate the volume of metric balls in complex Grassmann manifolds. The ball is defined as a set of hyperplanes of a fixed dimension with reference to a center of not necessarily the same dimension. The normalized volume of balls corresponds to the cumulative distribution of quantization error for uniformly-distributed sources, a problem notably related to rate-distortion analysis, and to packing bounds. A generalized chordal distance for unequal dimensional subspaces is used. First, a symmetry property between complementary balls is presented, extending previous small ball results to larger radius. Then, the volume is shown to be reducible to a one-dimensional integral representation, valid for any radius. Accordingly, the overall problem boils down to evaluating a determinant of a matrix of same size than the subspace dimensionality. Examples of explicit polynomial expressions emanating from the integral formulation are given.\",\"PeriodicalId\":281890,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITWF.2015.7360783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop - Fall (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWF.2015.7360783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了复数格拉斯曼流形中公制球的体积。球被定义为一组参考不一定相同维数的中心的固定维数的超平面。球的归一化体积对应于均匀分布源的量化误差的累积分布,这是一个与率失真分析和填充边界密切相关的问题。利用不等维子空间的广义弦距离。首先,提出了互补球之间的对称性,将以前的小球结果扩展到更大的半径。然后,证明了体积可约为一维积分表示,对任何半径都有效。因此,整个问题归结为计算与子空间维度大小相同的矩阵的行列式。给出了由积分公式导出的显式多项式表达式的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the exact volume of metric balls in complex Grassmann manifolds
We evaluate the volume of metric balls in complex Grassmann manifolds. The ball is defined as a set of hyperplanes of a fixed dimension with reference to a center of not necessarily the same dimension. The normalized volume of balls corresponds to the cumulative distribution of quantization error for uniformly-distributed sources, a problem notably related to rate-distortion analysis, and to packing bounds. A generalized chordal distance for unequal dimensional subspaces is used. First, a symmetry property between complementary balls is presented, extending previous small ball results to larger radius. Then, the volume is shown to be reducible to a one-dimensional integral representation, valid for any radius. Accordingly, the overall problem boils down to evaluating a determinant of a matrix of same size than the subspace dimensionality. Examples of explicit polynomial expressions emanating from the integral formulation are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信