结合自组织映射和LVQ的连续密度隐马尔可夫模型的训练

M. Kurimo, K. Torkkola
{"title":"结合自组织映射和LVQ的连续密度隐马尔可夫模型的训练","authors":"M. Kurimo, K. Torkkola","doi":"10.1109/NNSP.1992.253695","DOIUrl":null,"url":null,"abstract":"The authors propose a novel initialization method for continuous observation density hidden Markov models (CDHMMs) that is based on self-organizing maps (SOMs) and learning vector quantization (LVQ). The framework is to transcribe speech into phoneme sequences using CDHMMs as phoneme models. When numerous mixtures of, for example, Gaussian density functions are used to model the observation distributions of CDHMMs, good initial values are necessary in order for the Baum-Welch estimation to converge satisfactorily. The authors have experimented with constructing rapidly good initial values by SOMs, and with enhancing the discriminatory power of the phoneme models by adaptively training the state output distributions by using the LVQ algorithm. Experiments indicate that an improvement to the pure Baum-Welch and the segmentation K-means procedures can be obtained using the proposed method.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Training continuous density hidden Markov models in association with self-organizing maps and LVQ\",\"authors\":\"M. Kurimo, K. Torkkola\",\"doi\":\"10.1109/NNSP.1992.253695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose a novel initialization method for continuous observation density hidden Markov models (CDHMMs) that is based on self-organizing maps (SOMs) and learning vector quantization (LVQ). The framework is to transcribe speech into phoneme sequences using CDHMMs as phoneme models. When numerous mixtures of, for example, Gaussian density functions are used to model the observation distributions of CDHMMs, good initial values are necessary in order for the Baum-Welch estimation to converge satisfactorily. The authors have experimented with constructing rapidly good initial values by SOMs, and with enhancing the discriminatory power of the phoneme models by adaptively training the state output distributions by using the LVQ algorithm. Experiments indicate that an improvement to the pure Baum-Welch and the segmentation K-means procedures can be obtained using the proposed method.<<ETX>>\",\"PeriodicalId\":438250,\"journal\":{\"name\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1992.253695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种基于自组织映射(SOMs)和学习向量量化(LVQ)的连续观测密度隐马尔可夫模型初始化方法。该框架是使用cdhmm作为音素模型将语音转录成音素序列。例如,当使用大量的混合高斯密度函数来模拟cdhmm的观测分布时,为了使Baum-Welch估计令人满意地收敛,必须有良好的初始值。作者尝试了利用som快速构建良好的初始值,并利用LVQ算法自适应训练状态输出分布来增强音素模型的区分能力。实验表明,该方法对纯Baum-Welch方法和分割K-means方法都有改进
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training continuous density hidden Markov models in association with self-organizing maps and LVQ
The authors propose a novel initialization method for continuous observation density hidden Markov models (CDHMMs) that is based on self-organizing maps (SOMs) and learning vector quantization (LVQ). The framework is to transcribe speech into phoneme sequences using CDHMMs as phoneme models. When numerous mixtures of, for example, Gaussian density functions are used to model the observation distributions of CDHMMs, good initial values are necessary in order for the Baum-Welch estimation to converge satisfactorily. The authors have experimented with constructing rapidly good initial values by SOMs, and with enhancing the discriminatory power of the phoneme models by adaptively training the state output distributions by using the LVQ algorithm. Experiments indicate that an improvement to the pure Baum-Welch and the segmentation K-means procedures can be obtained using the proposed method.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信