有界顶fanin深度-4电路的确定性同一性检验范式

P. Dutta, Prateek Dwivedi, Nitin Saxena
{"title":"有界顶fanin深度-4电路的确定性同一性检验范式","authors":"P. Dutta, Prateek Dwivedi, Nitin Saxena","doi":"10.4230/LIPIcs.CCC.2021.11","DOIUrl":null,"url":null,"abstract":"Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4 reduction (Agrawal & Vinay, FOCS'08) has made PIT for depth-4 circuits, an enticing pursuit. The largely open special-cases of sum-product-of-sum-of-univariates (Σ[k]ΠΣ∧) and sum-product-of-constant-degree-polynomials (Σ[k]ΠΣΠδ), for constants k, δ, have been a source of many great ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC'05; Kayal & Saxena, CCC'06; Saxena & Seshadhri, FOCS'10, STOC'11); depth-4 ideas (Beecken, Mittmann & Saxena, ICALP'11; Saha, Saxena & Saptharishi, Comput.Compl.'13; Forbes, FOCS'15; Kumar & Saraf, CCC'16); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS'09; Shpilka, STOC'19; Peleg & Shpilka, CCC'20, STOC'21). We solve two of the basic underlying open problems in this work. We give the first polynomial-time PIT for (Σ[k]ΠΣ∧). Further, we give the first quasipolynomial time blackbox PIT for both (Σ[k]ΠΣ∧) and (Σ[k]ΠΣΠδ). No subexponential time algorithm was known prior to this work (even if k = δ = 3). A key technical ingredient in all the three algorithms is how the logarithmic derivative, and its power-series, modify the top Π-gate to ∧.","PeriodicalId":336911,"journal":{"name":"Proceedings of the 36th Computational Complexity Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Deterministic identity testing paradigms for bounded top-fanin depth-4 circuits\",\"authors\":\"P. Dutta, Prateek Dwivedi, Nitin Saxena\",\"doi\":\"10.4230/LIPIcs.CCC.2021.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4 reduction (Agrawal & Vinay, FOCS'08) has made PIT for depth-4 circuits, an enticing pursuit. The largely open special-cases of sum-product-of-sum-of-univariates (Σ[k]ΠΣ∧) and sum-product-of-constant-degree-polynomials (Σ[k]ΠΣΠδ), for constants k, δ, have been a source of many great ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC'05; Kayal & Saxena, CCC'06; Saxena & Seshadhri, FOCS'10, STOC'11); depth-4 ideas (Beecken, Mittmann & Saxena, ICALP'11; Saha, Saxena & Saptharishi, Comput.Compl.'13; Forbes, FOCS'15; Kumar & Saraf, CCC'16); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS'09; Shpilka, STOC'19; Peleg & Shpilka, CCC'20, STOC'21). We solve two of the basic underlying open problems in this work. We give the first polynomial-time PIT for (Σ[k]ΠΣ∧). Further, we give the first quasipolynomial time blackbox PIT for both (Σ[k]ΠΣ∧) and (Σ[k]ΠΣΠδ). No subexponential time algorithm was known prior to this work (even if k = δ = 3). A key technical ingredient in all the three algorithms is how the logarithmic derivative, and its power-series, modify the top Π-gate to ∧.\",\"PeriodicalId\":336911,\"journal\":{\"name\":\"Proceedings of the 36th Computational Complexity Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th Computational Complexity Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2021.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th Computational Complexity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2021.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

多项式恒等检验(PIT)是一个基本的计算问题。著名的深度-4还原(Agrawal & Vinay, FOCS'08)使深度-4电路成为一个诱人的追求。对于常数k, δ而言,单变量和的和积的和积(Σ[k]ΠΣ∧)和常次多项式的和积(Σ[k]ΠΣΠδ)这两个开放的特例,在过去二十年中已经成为许多伟大思想的源泉。如。deep -3 ideas (Dvir & Shpilka, STOC'05;Kayal & Saxena, CCC'06;Saxena & Seshadhri, FOCS'10, STOC'11);深度-4的想法(Beecken, Mittmann & Saxena, ICALP'11;Saha, Saxena & Saptharishi, computer . compl '13;《福布斯》,foc 15;Kumar & Saraf, CCC'16);几何Sylvester-Gallai思想(Kayal & Saraf, FOCS'09;Shpilka,获得STOC 19;中国科学院学报(自然科学版)[j];在这项工作中,我们解决了两个基本的潜在开放问题。我们给出了(Σ[k]ΠΣ∧)的第一个多项式时间PIT。进一步,我们给出了(Σ[k]ΠΣ∧)和(Σ[k]ΠΣΠδ)的第一个拟多项式时间黑箱PIT。在此工作之前,没有已知的次指数时间算法(即使k = δ = 3)。所有三种算法的关键技术成分是对数导数及其幂级数如何将顶部Π-gate修改为∧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic identity testing paradigms for bounded top-fanin depth-4 circuits
Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4 reduction (Agrawal & Vinay, FOCS'08) has made PIT for depth-4 circuits, an enticing pursuit. The largely open special-cases of sum-product-of-sum-of-univariates (Σ[k]ΠΣ∧) and sum-product-of-constant-degree-polynomials (Σ[k]ΠΣΠδ), for constants k, δ, have been a source of many great ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC'05; Kayal & Saxena, CCC'06; Saxena & Seshadhri, FOCS'10, STOC'11); depth-4 ideas (Beecken, Mittmann & Saxena, ICALP'11; Saha, Saxena & Saptharishi, Comput.Compl.'13; Forbes, FOCS'15; Kumar & Saraf, CCC'16); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS'09; Shpilka, STOC'19; Peleg & Shpilka, CCC'20, STOC'21). We solve two of the basic underlying open problems in this work. We give the first polynomial-time PIT for (Σ[k]ΠΣ∧). Further, we give the first quasipolynomial time blackbox PIT for both (Σ[k]ΠΣ∧) and (Σ[k]ΠΣΠδ). No subexponential time algorithm was known prior to this work (even if k = δ = 3). A key technical ingredient in all the three algorithms is how the logarithmic derivative, and its power-series, modify the top Π-gate to ∧.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信