Davide Capoferri, Clara Borrelli, Paolo Bestagini, F. Antonacci, A. Sarti, S. Tubaro
{"title":"利用混响线索的语音音频拼接检测和定位","authors":"Davide Capoferri, Clara Borrelli, Paolo Bestagini, F. Antonacci, A. Sarti, S. Tubaro","doi":"10.1109/WIFS49906.2020.9360900","DOIUrl":null,"url":null,"abstract":"Manipulating speech audio recordings through splicing is a task within everyone’s reach. Indeed, it is very easy to collect through social media multiple audio recordings from well-known public figures (e.g., actors, politicians, etc.). These can be cut into smaller excerpts that can be concatenated in order to generate new audio content. As a fake speech from a famous person can be used for fake news spreading and negatively impact on the society, the ability of detecting whether a speech recording has been manipulated is a task of great interest in the forensics community. In this work, we focus on speech audio splicing detection and localization. We leverage the idea that distinct recordings may be acquired in different environments, which are typically characterized by distinctive reverberation cues. Exploiting this property, our method estimates inconsistencies in the reverberation time throughout a speech recording. If reverberation inconsistencies are detected, the audio track is tagged as manipulated and the splicing point time instant is estimated.","PeriodicalId":354881,"journal":{"name":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Speech Audio Splicing Detection and Localization Exploiting Reverberation Cues\",\"authors\":\"Davide Capoferri, Clara Borrelli, Paolo Bestagini, F. Antonacci, A. Sarti, S. Tubaro\",\"doi\":\"10.1109/WIFS49906.2020.9360900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manipulating speech audio recordings through splicing is a task within everyone’s reach. Indeed, it is very easy to collect through social media multiple audio recordings from well-known public figures (e.g., actors, politicians, etc.). These can be cut into smaller excerpts that can be concatenated in order to generate new audio content. As a fake speech from a famous person can be used for fake news spreading and negatively impact on the society, the ability of detecting whether a speech recording has been manipulated is a task of great interest in the forensics community. In this work, we focus on speech audio splicing detection and localization. We leverage the idea that distinct recordings may be acquired in different environments, which are typically characterized by distinctive reverberation cues. Exploiting this property, our method estimates inconsistencies in the reverberation time throughout a speech recording. If reverberation inconsistencies are detected, the audio track is tagged as manipulated and the splicing point time instant is estimated.\",\"PeriodicalId\":354881,\"journal\":{\"name\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS49906.2020.9360900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS49906.2020.9360900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speech Audio Splicing Detection and Localization Exploiting Reverberation Cues
Manipulating speech audio recordings through splicing is a task within everyone’s reach. Indeed, it is very easy to collect through social media multiple audio recordings from well-known public figures (e.g., actors, politicians, etc.). These can be cut into smaller excerpts that can be concatenated in order to generate new audio content. As a fake speech from a famous person can be used for fake news spreading and negatively impact on the society, the ability of detecting whether a speech recording has been manipulated is a task of great interest in the forensics community. In this work, we focus on speech audio splicing detection and localization. We leverage the idea that distinct recordings may be acquired in different environments, which are typically characterized by distinctive reverberation cues. Exploiting this property, our method estimates inconsistencies in the reverberation time throughout a speech recording. If reverberation inconsistencies are detected, the audio track is tagged as manipulated and the splicing point time instant is estimated.