利用有限访问距离实现gpu上的显式一步法跨阶段核融合

Matthias Korch, Tim Werner
{"title":"利用有限访问距离实现gpu上的显式一步法跨阶段核融合","authors":"Matthias Korch, Tim Werner","doi":"10.1109/CAHPC.2018.8645892","DOIUrl":null,"url":null,"abstract":"The performance of explicit parallel methods solving large systems of ordinary differential equations (ODEs) on GPUs is often memory bound. Therefore, locality optimizations, such as kernel fusion, are desirable. This paper exploits a special property of a large class of right-hand-side (RHS) functions to enable the fusion of computations of blocks of components across multiple stages of the method. This leads to a tiling of the stages within one time step. Our approach is based on a representation of the ODE method by a data flow graph and allows efficient GPU code with fused kernels to be generated automatically for user-defined tilings. In particular, we investigate two generalized tiling strategies, trapezoidal and hexagonal tiling, which are evaluated experimentally for several different high-order Runge-Kutta (RK) methods.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploiting Limited Access Distance for Kernel Fusion Across the Stages of Explicit One-Step Methods on GPUs\",\"authors\":\"Matthias Korch, Tim Werner\",\"doi\":\"10.1109/CAHPC.2018.8645892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of explicit parallel methods solving large systems of ordinary differential equations (ODEs) on GPUs is often memory bound. Therefore, locality optimizations, such as kernel fusion, are desirable. This paper exploits a special property of a large class of right-hand-side (RHS) functions to enable the fusion of computations of blocks of components across multiple stages of the method. This leads to a tiling of the stages within one time step. Our approach is based on a representation of the ODE method by a data flow graph and allows efficient GPU code with fused kernels to be generated automatically for user-defined tilings. In particular, we investigate two generalized tiling strategies, trapezoidal and hexagonal tiling, which are evaluated experimentally for several different high-order Runge-Kutta (RK) methods.\",\"PeriodicalId\":307747,\"journal\":{\"name\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAHPC.2018.8645892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在gpu上求解大型常微分方程组的显式并行方法的性能往往受到内存限制。因此,局部性优化,如核融合,是可取的。本文利用了一类大的右侧(RHS)函数的一个特殊性质,使得该方法的多个阶段中组件块的计算融合。这将导致在一个时间步内平铺各个阶段。我们的方法是基于ODE方法的数据流图表示,并允许为用户定义的平铺自动生成具有融合内核的高效GPU代码。特别地,我们研究了两种广义的平铺策略,梯形和六边形平铺策略,并对几种不同的高阶龙格-库塔(RK)方法进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Limited Access Distance for Kernel Fusion Across the Stages of Explicit One-Step Methods on GPUs
The performance of explicit parallel methods solving large systems of ordinary differential equations (ODEs) on GPUs is often memory bound. Therefore, locality optimizations, such as kernel fusion, are desirable. This paper exploits a special property of a large class of right-hand-side (RHS) functions to enable the fusion of computations of blocks of components across multiple stages of the method. This leads to a tiling of the stages within one time step. Our approach is based on a representation of the ODE method by a data flow graph and allows efficient GPU code with fused kernels to be generated automatically for user-defined tilings. In particular, we investigate two generalized tiling strategies, trapezoidal and hexagonal tiling, which are evaluated experimentally for several different high-order Runge-Kutta (RK) methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信