结合信息提取和文本挖掘的癌症生物标志物检测

Khaled Dawoud, Shang Gao, Ala Qabaja, P. Karampelas, R. Alhajj
{"title":"结合信息提取和文本挖掘的癌症生物标志物检测","authors":"Khaled Dawoud, Shang Gao, Ala Qabaja, P. Karampelas, R. Alhajj","doi":"10.1145/2492517.2500281","DOIUrl":null,"url":null,"abstract":"Information technology is advancing faster than anticipated. The amount of data captured and stored in electronic form by far exceeds the capabilities available for comprehensive analysis and effective knowledge discovery. There is always a need for new sophisticated techniques that could extract more of the knowledge hidden in the raw data collected continuously in huge repositories. Biomedicine and computational biology is one of the domains overwhelmed with huge amounts of data that should be carefully analyzed for valuable knowledge that may help uncovering many of the still unknown information related to various diseases threatening the human body. Biomarker detection is one of the areas which have received considerable attention in the research community. There are two sources of data that could be analyzed for biomarker detection, namely gene expression data and the rich literature related to the domain. Our research group has reported achievements analyzing both domains. In this paper, we concentrate on the latter domain by describing a powerful tool which is capable of extracting from the content of a repository (like PubMed) the parts related to a given specific domain like cancer, analyze the retrieved text to extract the key terms with high frequency, present the extracted terms to domain experts for selecting those most relevant to the investigated domain, retrieve from the analyzed text molecules related to the domain by considering the relevant terms, derive the network which will be analyzed to identify potential biomarkers. For the work described in this paper, we considered PubMed and extracted abstracts related to prostate and breast cancer. The reported results are promising; they demonstrate the effectiveness and applicability of the proposed approach.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining information extraction and text mining for cancer biomarker detection\",\"authors\":\"Khaled Dawoud, Shang Gao, Ala Qabaja, P. Karampelas, R. Alhajj\",\"doi\":\"10.1145/2492517.2500281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information technology is advancing faster than anticipated. The amount of data captured and stored in electronic form by far exceeds the capabilities available for comprehensive analysis and effective knowledge discovery. There is always a need for new sophisticated techniques that could extract more of the knowledge hidden in the raw data collected continuously in huge repositories. Biomedicine and computational biology is one of the domains overwhelmed with huge amounts of data that should be carefully analyzed for valuable knowledge that may help uncovering many of the still unknown information related to various diseases threatening the human body. Biomarker detection is one of the areas which have received considerable attention in the research community. There are two sources of data that could be analyzed for biomarker detection, namely gene expression data and the rich literature related to the domain. Our research group has reported achievements analyzing both domains. In this paper, we concentrate on the latter domain by describing a powerful tool which is capable of extracting from the content of a repository (like PubMed) the parts related to a given specific domain like cancer, analyze the retrieved text to extract the key terms with high frequency, present the extracted terms to domain experts for selecting those most relevant to the investigated domain, retrieve from the analyzed text molecules related to the domain by considering the relevant terms, derive the network which will be analyzed to identify potential biomarkers. For the work described in this paper, we considered PubMed and extracted abstracts related to prostate and breast cancer. The reported results are promising; they demonstrate the effectiveness and applicability of the proposed approach.\",\"PeriodicalId\":442230,\"journal\":{\"name\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492517.2500281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2500281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息技术的发展比预期的要快。以电子形式捕获和存储的数据量远远超过了全面分析和有效发现知识的能力。总是需要新的复杂技术来提取隐藏在庞大存储库中不断收集的原始数据中的更多知识。生物医学和计算生物学是一个被大量数据淹没的领域,应该仔细分析有价值的知识,这些知识可能有助于揭示与威胁人体的各种疾病有关的许多未知信息。生物标志物检测是近年来备受关注的研究领域之一。生物标志物检测可以分析的数据有两个来源,即基因表达数据和丰富的与该域相关的文献。我们的研究小组已经报告了分析这两个领域的成果。在本文中,我们通过描述一个强大的工具来关注后一个领域,该工具能够从存储库(如PubMed)的内容中提取与特定领域(如癌症)相关的部分,分析检索到的文本以提取高频率的关键术语,将提取的术语呈现给领域专家以选择与所研究领域最相关的术语,并通过考虑相关术语从分析的文本中检索与该领域相关的分子。导出将被分析以识别潜在生物标记物的网络。对于本文中描述的工作,我们参考了PubMed和与前列腺癌和乳腺癌相关的提取摘要。报告的结果是有希望的;它们证明了所提出方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining information extraction and text mining for cancer biomarker detection
Information technology is advancing faster than anticipated. The amount of data captured and stored in electronic form by far exceeds the capabilities available for comprehensive analysis and effective knowledge discovery. There is always a need for new sophisticated techniques that could extract more of the knowledge hidden in the raw data collected continuously in huge repositories. Biomedicine and computational biology is one of the domains overwhelmed with huge amounts of data that should be carefully analyzed for valuable knowledge that may help uncovering many of the still unknown information related to various diseases threatening the human body. Biomarker detection is one of the areas which have received considerable attention in the research community. There are two sources of data that could be analyzed for biomarker detection, namely gene expression data and the rich literature related to the domain. Our research group has reported achievements analyzing both domains. In this paper, we concentrate on the latter domain by describing a powerful tool which is capable of extracting from the content of a repository (like PubMed) the parts related to a given specific domain like cancer, analyze the retrieved text to extract the key terms with high frequency, present the extracted terms to domain experts for selecting those most relevant to the investigated domain, retrieve from the analyzed text molecules related to the domain by considering the relevant terms, derive the network which will be analyzed to identify potential biomarkers. For the work described in this paper, we considered PubMed and extracted abstracts related to prostate and breast cancer. The reported results are promising; they demonstrate the effectiveness and applicability of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信