从移动和可穿戴数据流建模生物行为节律的计算框架

Runze Yan, Xinwen Liu, Janine M. Dutcher, Michael J. Tumminia, Daniella K. Villalba, Sheldon Cohen, David Creswell, Kasey G. Creswell, Jennifer Mankoff, A. Dey, Afsaneh Doryab
{"title":"从移动和可穿戴数据流建模生物行为节律的计算框架","authors":"Runze Yan, Xinwen Liu, Janine M. Dutcher, Michael J. Tumminia, Daniella K. Villalba, Sheldon Cohen, David Creswell, Kasey G. Creswell, Jennifer Mankoff, A. Dey, Afsaneh Doryab","doi":"10.1145/3510029","DOIUrl":null,"url":null,"abstract":"This paper presents a computational framework for modeling biobehavioral rhythms - the repeating cycles of physiological, psychological, social, and environmental events - from mobile and wearable data streams. The framework incorporates four main components: mobile data processing, rhythm discovery, rhythm modeling, and machine learning. We evaluate the framework with two case studies using datasets of smartphone, Fitbit, and OURA smart ring to evaluate the framework’s ability to (1) detect cyclic biobehavior, (2) model commonality and differences in rhythms of human participants in the sample datasets, and (3) predict their health and readiness status using models of biobehavioral rhythms. Our evaluation demonstrates the framework’s ability to generate new knowledge and findings through rigorous micro- and macro-level modeling of human rhythms from mobile and wearable data streams collected in the wild and using them to assess and predict different life and health outcomes.","PeriodicalId":123526,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology (TIST)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Computational Framework for Modeling Biobehavioral Rhythms from Mobile and Wearable Data Streams\",\"authors\":\"Runze Yan, Xinwen Liu, Janine M. Dutcher, Michael J. Tumminia, Daniella K. Villalba, Sheldon Cohen, David Creswell, Kasey G. Creswell, Jennifer Mankoff, A. Dey, Afsaneh Doryab\",\"doi\":\"10.1145/3510029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a computational framework for modeling biobehavioral rhythms - the repeating cycles of physiological, psychological, social, and environmental events - from mobile and wearable data streams. The framework incorporates four main components: mobile data processing, rhythm discovery, rhythm modeling, and machine learning. We evaluate the framework with two case studies using datasets of smartphone, Fitbit, and OURA smart ring to evaluate the framework’s ability to (1) detect cyclic biobehavior, (2) model commonality and differences in rhythms of human participants in the sample datasets, and (3) predict their health and readiness status using models of biobehavioral rhythms. Our evaluation demonstrates the framework’s ability to generate new knowledge and findings through rigorous micro- and macro-level modeling of human rhythms from mobile and wearable data streams collected in the wild and using them to assess and predict different life and health outcomes.\",\"PeriodicalId\":123526,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology (TIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一个计算框架,用于模拟生物行为节律-生理,心理,社会和环境事件的重复周期-从移动和可穿戴数据流。该框架包含四个主要组件:移动数据处理、节奏发现、节奏建模和机器学习。我们使用智能手机、Fitbit和OURA智能环的数据集对该框架进行了两个案例研究,以评估该框架在以下方面的能力:(1)检测循环生物行为,(2)模拟样本数据集中人类参与者节律的共性和差异,以及(3)使用生物行为节律模型预测他们的健康和准备状态。我们的评估表明,该框架能够通过从野外收集的移动和可穿戴数据流中对人类节律进行严格的微观和宏观建模,并使用它们来评估和预测不同的生命和健康结果,从而产生新的知识和发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computational Framework for Modeling Biobehavioral Rhythms from Mobile and Wearable Data Streams
This paper presents a computational framework for modeling biobehavioral rhythms - the repeating cycles of physiological, psychological, social, and environmental events - from mobile and wearable data streams. The framework incorporates four main components: mobile data processing, rhythm discovery, rhythm modeling, and machine learning. We evaluate the framework with two case studies using datasets of smartphone, Fitbit, and OURA smart ring to evaluate the framework’s ability to (1) detect cyclic biobehavior, (2) model commonality and differences in rhythms of human participants in the sample datasets, and (3) predict their health and readiness status using models of biobehavioral rhythms. Our evaluation demonstrates the framework’s ability to generate new knowledge and findings through rigorous micro- and macro-level modeling of human rhythms from mobile and wearable data streams collected in the wild and using them to assess and predict different life and health outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信