BM25文档长度规范化的冗余裂变

Aldo Lipani, M. Lupu, A. Hanbury, Akiko Aizawa
{"title":"BM25文档长度规范化的冗余裂变","authors":"Aldo Lipani, M. Lupu, A. Hanbury, Akiko Aizawa","doi":"10.1145/2808194.2809486","DOIUrl":null,"url":null,"abstract":"BM25 is probably the most well known term weighting model in Information Retrieval. It has, depending on the formula variant at hand, 2 or 3 parameters (k1, b, and k3). This paper addresses b - the document length normalization parameter. Based on the observation that the two cases previously discussed for length normalization (multi-topicality and verboseness) are actually three: multi-topicality, verboseness with word repetition (repetitiveness) and verboseness with synonyms, we propose and test a new length normalization method that removes the need for a b parameter in BM25. Testing the new method on a set of purposefully varied test collections, we observe that we can obtain results statistically indistinguishable from the optimal results, therefore removing the need for ground-truth based optimization.","PeriodicalId":440325,"journal":{"name":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Verboseness Fission for BM25 Document Length Normalization\",\"authors\":\"Aldo Lipani, M. Lupu, A. Hanbury, Akiko Aizawa\",\"doi\":\"10.1145/2808194.2809486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BM25 is probably the most well known term weighting model in Information Retrieval. It has, depending on the formula variant at hand, 2 or 3 parameters (k1, b, and k3). This paper addresses b - the document length normalization parameter. Based on the observation that the two cases previously discussed for length normalization (multi-topicality and verboseness) are actually three: multi-topicality, verboseness with word repetition (repetitiveness) and verboseness with synonyms, we propose and test a new length normalization method that removes the need for a b parameter in BM25. Testing the new method on a set of purposefully varied test collections, we observe that we can obtain results statistically indistinguishable from the optimal results, therefore removing the need for ground-truth based optimization.\",\"PeriodicalId\":440325,\"journal\":{\"name\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808194.2809486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808194.2809486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

BM25可能是信息检索中最著名的术语加权模型。根据手头的公式变体,它有2或3个参数(k1, b和k3)。本文讨论了文档长度规范化参数b。基于前面讨论的长度规范化的两种情况(多主题性和冗长性)实际上是三种情况:多主题性、单词重复的冗长性(重复性)和同义词的冗长性,我们提出并测试了一种新的长度规范化方法,该方法在BM25中不需要b参数。在一组有目的地变化的测试集合上测试新方法,我们观察到我们可以获得与最优结果在统计上无法区分的结果,因此无需基于真值的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verboseness Fission for BM25 Document Length Normalization
BM25 is probably the most well known term weighting model in Information Retrieval. It has, depending on the formula variant at hand, 2 or 3 parameters (k1, b, and k3). This paper addresses b - the document length normalization parameter. Based on the observation that the two cases previously discussed for length normalization (multi-topicality and verboseness) are actually three: multi-topicality, verboseness with word repetition (repetitiveness) and verboseness with synonyms, we propose and test a new length normalization method that removes the need for a b parameter in BM25. Testing the new method on a set of purposefully varied test collections, we observe that we can obtain results statistically indistinguishable from the optimal results, therefore removing the need for ground-truth based optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信