M. Nasabi, A. Mitchell, K. Kalantar-zadeh, W. Nesbitt
{"title":"蛋白质阵列的微戳图型","authors":"M. Nasabi, A. Mitchell, K. Kalantar-zadeh, W. Nesbitt","doi":"10.1109/ICONN.2008.4639260","DOIUrl":null,"url":null,"abstract":"Pathological thrombus formation is initiated by the interaction of blood platelets to immobilized proteins at the vessel wall. Platelet surface adhesion leads to biochemical activation and structural reorganization resulting in spreading of the platelet across the adhesive surface. Extensive studies have been carried out to examine platelet spreading responses on continuous substrates but little is known about the impact of protein surface distribution on platelet function. This paper describes the development of a micro-contact printing technique to establish defined 2-dimensional arrays of the thrombogenic protein fibrinogen at the surface of glass substrates, with the aim of investigating the impact of protein surface distribution on platelet biochemical signaling events associated with the adhesion/spreading process.","PeriodicalId":192889,"journal":{"name":"2008 International Conference on Nanoscience and Nanotechnology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microstamp patterning of protein arrays\",\"authors\":\"M. Nasabi, A. Mitchell, K. Kalantar-zadeh, W. Nesbitt\",\"doi\":\"10.1109/ICONN.2008.4639260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pathological thrombus formation is initiated by the interaction of blood platelets to immobilized proteins at the vessel wall. Platelet surface adhesion leads to biochemical activation and structural reorganization resulting in spreading of the platelet across the adhesive surface. Extensive studies have been carried out to examine platelet spreading responses on continuous substrates but little is known about the impact of protein surface distribution on platelet function. This paper describes the development of a micro-contact printing technique to establish defined 2-dimensional arrays of the thrombogenic protein fibrinogen at the surface of glass substrates, with the aim of investigating the impact of protein surface distribution on platelet biochemical signaling events associated with the adhesion/spreading process.\",\"PeriodicalId\":192889,\"journal\":{\"name\":\"2008 International Conference on Nanoscience and Nanotechnology\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONN.2008.4639260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONN.2008.4639260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pathological thrombus formation is initiated by the interaction of blood platelets to immobilized proteins at the vessel wall. Platelet surface adhesion leads to biochemical activation and structural reorganization resulting in spreading of the platelet across the adhesive surface. Extensive studies have been carried out to examine platelet spreading responses on continuous substrates but little is known about the impact of protein surface distribution on platelet function. This paper describes the development of a micro-contact printing technique to establish defined 2-dimensional arrays of the thrombogenic protein fibrinogen at the surface of glass substrates, with the aim of investigating the impact of protein surface distribution on platelet biochemical signaling events associated with the adhesion/spreading process.