每个位计数:快速和可扩展的RFID估计

Muhammad Shahzad, A. Liu
{"title":"每个位计数:快速和可扩展的RFID估计","authors":"Muhammad Shahzad, A. Liu","doi":"10.1145/2348543.2348588","DOIUrl":null,"url":null,"abstract":"Radio Frequency Identification (RFID) systems have been widely deployed for various applications such as object tracking, 3D positioning, supply chain management, inventory control, and access control. This paper concerns the fundamental problem of estimating RFID tag population size, which is needed in many applications such as tag identification, warehouse monitoring, and privacy sensitive RFID systems. In this paper, we propose a new scheme for estimating tag population size called Average Run based Tag estimation (ART). The technique is based on the average run-length of ones in the bit string received using the standardized framed slotted Aloha protocol. ART is significantly faster than prior schemes because its estimator has smaller variance compared to the variances of estimators of prior schemes. For example, given a required confidence interval of 0.1% and a required reliability of 99.9%, ART is consistently 7 times faster than the fastest existing schemes (UPE and EZB) for any tag population size. Furthermore, ART's estimation time is observably independent of the tag population sizes. ART is easy to deploy because it neither requires modification to tags nor to the communication protocol between tags and readers. ART only needs to be implemented on readers as a software module. ART works with multiple readers with overlapping regions.","PeriodicalId":378295,"journal":{"name":"ACM/IEEE International Conference on Mobile Computing and Networking","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":"{\"title\":\"Every bit counts: fast and scalable RFID estimation\",\"authors\":\"Muhammad Shahzad, A. Liu\",\"doi\":\"10.1145/2348543.2348588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio Frequency Identification (RFID) systems have been widely deployed for various applications such as object tracking, 3D positioning, supply chain management, inventory control, and access control. This paper concerns the fundamental problem of estimating RFID tag population size, which is needed in many applications such as tag identification, warehouse monitoring, and privacy sensitive RFID systems. In this paper, we propose a new scheme for estimating tag population size called Average Run based Tag estimation (ART). The technique is based on the average run-length of ones in the bit string received using the standardized framed slotted Aloha protocol. ART is significantly faster than prior schemes because its estimator has smaller variance compared to the variances of estimators of prior schemes. For example, given a required confidence interval of 0.1% and a required reliability of 99.9%, ART is consistently 7 times faster than the fastest existing schemes (UPE and EZB) for any tag population size. Furthermore, ART's estimation time is observably independent of the tag population sizes. ART is easy to deploy because it neither requires modification to tags nor to the communication protocol between tags and readers. ART only needs to be implemented on readers as a software module. ART works with multiple readers with overlapping regions.\",\"PeriodicalId\":378295,\"journal\":{\"name\":\"ACM/IEEE International Conference on Mobile Computing and Networking\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"131\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE International Conference on Mobile Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2348543.2348588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2348543.2348588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131

摘要

射频识别(RFID)系统已广泛应用于各种应用,如对象跟踪、3D定位、供应链管理、库存控制和访问控制。本文关注的是RFID标签群体大小估计的基本问题,这在标签识别、仓库监控和隐私敏感的RFID系统等许多应用中都是需要的。在本文中,我们提出了一种新的估计标签总体大小的方案,称为基于平均运行的标签估计(ART)。该技术基于使用标准化的帧开槽Aloha协议接收的位串中的1的平均运行长度。ART的速度明显快于先前的方案,因为它的估计量与先前方案的估计量的方差相比具有较小的方差。例如,给定所需的置信区间为0.1%和所需的可靠性为99.9%,对于任何标签种群大小,ART始终比最快的现有方案(UPE和EZB)快7倍。此外,ART的估计时间与标签总体大小明显无关。ART很容易部署,因为它既不需要修改标签,也不需要修改标签和读取器之间的通信协议。ART只需要作为软件模块在阅读器上实现。ART有多个重叠区域的读卡器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Every bit counts: fast and scalable RFID estimation
Radio Frequency Identification (RFID) systems have been widely deployed for various applications such as object tracking, 3D positioning, supply chain management, inventory control, and access control. This paper concerns the fundamental problem of estimating RFID tag population size, which is needed in many applications such as tag identification, warehouse monitoring, and privacy sensitive RFID systems. In this paper, we propose a new scheme for estimating tag population size called Average Run based Tag estimation (ART). The technique is based on the average run-length of ones in the bit string received using the standardized framed slotted Aloha protocol. ART is significantly faster than prior schemes because its estimator has smaller variance compared to the variances of estimators of prior schemes. For example, given a required confidence interval of 0.1% and a required reliability of 99.9%, ART is consistently 7 times faster than the fastest existing schemes (UPE and EZB) for any tag population size. Furthermore, ART's estimation time is observably independent of the tag population sizes. ART is easy to deploy because it neither requires modification to tags nor to the communication protocol between tags and readers. ART only needs to be implemented on readers as a software module. ART works with multiple readers with overlapping regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信