Spoorti Doddamani, Piush K. Sinha, Hui Lu, Tsu-Hsiang K. Cheng, Hardik Bagdi, Kartik Gopalan
{"title":"快速和实时的hypervisor替换","authors":"Spoorti Doddamani, Piush K. Sinha, Hui Lu, Tsu-Hsiang K. Cheng, Hardik Bagdi, Kartik Gopalan","doi":"10.1145/3313808.3313821","DOIUrl":null,"url":null,"abstract":"Hypervisors are increasingly complex and must be often updated for applying security patches, bug fixes, and feature upgrades. However, in a virtualized cloud infrastructure, updates to an operational hypervisor can be highly disruptive. Before being updated, virtual machines (VMs) running on a hypervisor must be either migrated away or shut down, resulting in downtime, performance loss, and network overhead. We present a new technique, called HyperFresh, to transparently replace a hypervisor with a new updated instance without disrupting any running VMs. A thin shim layer, called the hyperplexor, performs live hypervisor replacement by remapping guest memory to a new updated hypervisor on the same machine. The hyperplexor leverages nested virtualization for hypervisor replacement while minimizing nesting overheads during normal execution. We present a prototype implementation of the hyperplexor on the KVM/QEMU platform that can perform live hypervisor replacement within 10ms. We also demonstrate how a hyperplexor-based approach can used for sub-second relocation of containers for live OS replacement.","PeriodicalId":350040,"journal":{"name":"Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fast and live hypervisor replacement\",\"authors\":\"Spoorti Doddamani, Piush K. Sinha, Hui Lu, Tsu-Hsiang K. Cheng, Hardik Bagdi, Kartik Gopalan\",\"doi\":\"10.1145/3313808.3313821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypervisors are increasingly complex and must be often updated for applying security patches, bug fixes, and feature upgrades. However, in a virtualized cloud infrastructure, updates to an operational hypervisor can be highly disruptive. Before being updated, virtual machines (VMs) running on a hypervisor must be either migrated away or shut down, resulting in downtime, performance loss, and network overhead. We present a new technique, called HyperFresh, to transparently replace a hypervisor with a new updated instance without disrupting any running VMs. A thin shim layer, called the hyperplexor, performs live hypervisor replacement by remapping guest memory to a new updated hypervisor on the same machine. The hyperplexor leverages nested virtualization for hypervisor replacement while minimizing nesting overheads during normal execution. We present a prototype implementation of the hyperplexor on the KVM/QEMU platform that can perform live hypervisor replacement within 10ms. We also demonstrate how a hyperplexor-based approach can used for sub-second relocation of containers for live OS replacement.\",\"PeriodicalId\":350040,\"journal\":{\"name\":\"Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3313808.3313821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3313808.3313821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hypervisors are increasingly complex and must be often updated for applying security patches, bug fixes, and feature upgrades. However, in a virtualized cloud infrastructure, updates to an operational hypervisor can be highly disruptive. Before being updated, virtual machines (VMs) running on a hypervisor must be either migrated away or shut down, resulting in downtime, performance loss, and network overhead. We present a new technique, called HyperFresh, to transparently replace a hypervisor with a new updated instance without disrupting any running VMs. A thin shim layer, called the hyperplexor, performs live hypervisor replacement by remapping guest memory to a new updated hypervisor on the same machine. The hyperplexor leverages nested virtualization for hypervisor replacement while minimizing nesting overheads during normal execution. We present a prototype implementation of the hyperplexor on the KVM/QEMU platform that can perform live hypervisor replacement within 10ms. We also demonstrate how a hyperplexor-based approach can used for sub-second relocation of containers for live OS replacement.