{"title":"一种基于关联的多用户协同活动实时分割方案","authors":"Kisoo Kim, Hyunju Kim, Dongman Lee","doi":"10.1109/COMPSAC54236.2022.00150","DOIUrl":null,"url":null,"abstract":"Activity Segmentation, dividing a continuous sensor stream into a set of activity segments, is a crucial pre-process in Human Activity Recognition (HAR) and it is required to be done in real-time for real-world smart services. Existing single-user activity segmentation schemes fail to correctly detect transition points due to concurrent and overlapping events from multiple users in case of Multi-user Collaborative Activity Recognition (MCAR). In this paper, we propose a novel scheme for activity segmentation for MCAR that expresses complex events and the correlations between them. For this, the proposed scheme first creates an event stream from a sensor stream and defines event sets in terms of time windows. For each time window, two types of correlations for every event pair are calculated: duration correlation and history correlation. After calculating event correlation, the change score of a time window is measured by comparing the calculated correlation values with those of the preceding windows. Then, the proposed scheme elects as an activity transition point a time window whose change score exceeds the transition threshold. We evaluate the proposed method on two multi-user collaborative activity datasets and experiment results show that the proposed scheme achieves better segmentation performance than existing approaches.","PeriodicalId":330838,"journal":{"name":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Correlation-based Real-time Segmentation Scheme for Multi-user Collaborative Activities\",\"authors\":\"Kisoo Kim, Hyunju Kim, Dongman Lee\",\"doi\":\"10.1109/COMPSAC54236.2022.00150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activity Segmentation, dividing a continuous sensor stream into a set of activity segments, is a crucial pre-process in Human Activity Recognition (HAR) and it is required to be done in real-time for real-world smart services. Existing single-user activity segmentation schemes fail to correctly detect transition points due to concurrent and overlapping events from multiple users in case of Multi-user Collaborative Activity Recognition (MCAR). In this paper, we propose a novel scheme for activity segmentation for MCAR that expresses complex events and the correlations between them. For this, the proposed scheme first creates an event stream from a sensor stream and defines event sets in terms of time windows. For each time window, two types of correlations for every event pair are calculated: duration correlation and history correlation. After calculating event correlation, the change score of a time window is measured by comparing the calculated correlation values with those of the preceding windows. Then, the proposed scheme elects as an activity transition point a time window whose change score exceeds the transition threshold. We evaluate the proposed method on two multi-user collaborative activity datasets and experiment results show that the proposed scheme achieves better segmentation performance than existing approaches.\",\"PeriodicalId\":330838,\"journal\":{\"name\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC54236.2022.00150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC54236.2022.00150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Correlation-based Real-time Segmentation Scheme for Multi-user Collaborative Activities
Activity Segmentation, dividing a continuous sensor stream into a set of activity segments, is a crucial pre-process in Human Activity Recognition (HAR) and it is required to be done in real-time for real-world smart services. Existing single-user activity segmentation schemes fail to correctly detect transition points due to concurrent and overlapping events from multiple users in case of Multi-user Collaborative Activity Recognition (MCAR). In this paper, we propose a novel scheme for activity segmentation for MCAR that expresses complex events and the correlations between them. For this, the proposed scheme first creates an event stream from a sensor stream and defines event sets in terms of time windows. For each time window, two types of correlations for every event pair are calculated: duration correlation and history correlation. After calculating event correlation, the change score of a time window is measured by comparing the calculated correlation values with those of the preceding windows. Then, the proposed scheme elects as an activity transition point a time window whose change score exceeds the transition threshold. We evaluate the proposed method on two multi-user collaborative activity datasets and experiment results show that the proposed scheme achieves better segmentation performance than existing approaches.