采用交叉耦合电感的改进型二次升压变换器

Yiyang Li, John Long Soon, S. Sathiakumar
{"title":"采用交叉耦合电感的改进型二次升压变换器","authors":"Yiyang Li, John Long Soon, S. Sathiakumar","doi":"10.1109/SPEC.2018.8635857","DOIUrl":null,"url":null,"abstract":"Based on the concept of the conventional quadratic boost converter, an improved topology is presented in this paper. In this design, a coupled-inductor will be utilized to increase the voltage gain of the circuit. The most significant advantage of this converter design is that the circuit has a high step-up ratio with a very low voltage stress on the switch. Moreover, this circuit utilizes minimum additional component to improve the converter performances. The inductor selection of this converter design is to ensure working in continuous-current mode (CCM) for various load conditions. Detailed circuit operation principle and theoretical voltage conversion ratio is derived. Finally, converter prototype was built to verify that using different coupling ratio can achieve high step up voltage gain capability.","PeriodicalId":335893,"journal":{"name":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improved quadratic boost converter using cross coupled-inductor\",\"authors\":\"Yiyang Li, John Long Soon, S. Sathiakumar\",\"doi\":\"10.1109/SPEC.2018.8635857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the concept of the conventional quadratic boost converter, an improved topology is presented in this paper. In this design, a coupled-inductor will be utilized to increase the voltage gain of the circuit. The most significant advantage of this converter design is that the circuit has a high step-up ratio with a very low voltage stress on the switch. Moreover, this circuit utilizes minimum additional component to improve the converter performances. The inductor selection of this converter design is to ensure working in continuous-current mode (CCM) for various load conditions. Detailed circuit operation principle and theoretical voltage conversion ratio is derived. Finally, converter prototype was built to verify that using different coupling ratio can achieve high step up voltage gain capability.\",\"PeriodicalId\":335893,\"journal\":{\"name\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2018.8635857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2018.8635857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在传统二次型升压变换器概念的基础上,提出了一种改进的拓扑结构。在这个设计中,将使用一个耦合电感来增加电路的电压增益。这种变换器设计最显著的优点是电路具有高升压比,开关上的电压应力非常低。此外,该电路利用最小的附加元件来提高变换器的性能。该变换器设计的电感选择是为了保证在各种负载条件下工作在连续电流模式下。推导了详细的电路工作原理和理论电压转换比。最后,建立了变换器样机,验证了采用不同的耦合比可以获得较高的升压增益能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved quadratic boost converter using cross coupled-inductor
Based on the concept of the conventional quadratic boost converter, an improved topology is presented in this paper. In this design, a coupled-inductor will be utilized to increase the voltage gain of the circuit. The most significant advantage of this converter design is that the circuit has a high step-up ratio with a very low voltage stress on the switch. Moreover, this circuit utilizes minimum additional component to improve the converter performances. The inductor selection of this converter design is to ensure working in continuous-current mode (CCM) for various load conditions. Detailed circuit operation principle and theoretical voltage conversion ratio is derived. Finally, converter prototype was built to verify that using different coupling ratio can achieve high step up voltage gain capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信