用于冻结伪影检测的慢动作视频序列数据库

Ela Vrtar, M. Herceg, M. Vranješ, Danijel Babic
{"title":"用于冻结伪影检测的慢动作视频序列数据库","authors":"Ela Vrtar, M. Herceg, M. Vranješ, Danijel Babic","doi":"10.1109/ZINC58345.2023.10174092","DOIUrl":null,"url":null,"abstract":"In this paper, a new video sequence database, called Slow Motion Video Sequences (SMVS), is developed. The developed SMVS database consists of 30 video sequences with very low temporal activities, where every sequence contains a freezing artifact. The performance of two freezing detection algorithms, the Histogram-Based Freezing Artifacts Detection Algorithm (HBFDA) and the Real-Time no-reference Freezing Detection Algorithm (RTFDA) are tested on the developed database. The testing results show the poor performance of the tested algorithms.","PeriodicalId":383771,"journal":{"name":"2023 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slow motion video sequences database for freezing artifact detection\",\"authors\":\"Ela Vrtar, M. Herceg, M. Vranješ, Danijel Babic\",\"doi\":\"10.1109/ZINC58345.2023.10174092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new video sequence database, called Slow Motion Video Sequences (SMVS), is developed. The developed SMVS database consists of 30 video sequences with very low temporal activities, where every sequence contains a freezing artifact. The performance of two freezing detection algorithms, the Histogram-Based Freezing Artifacts Detection Algorithm (HBFDA) and the Real-Time no-reference Freezing Detection Algorithm (RTFDA) are tested on the developed database. The testing results show the poor performance of the tested algorithms.\",\"PeriodicalId\":383771,\"journal\":{\"name\":\"2023 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ZINC58345.2023.10174092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC58345.2023.10174092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文开发了一种新的视频序列数据库——慢动作视频序列(SMVS)。开发的SMVS数据库由30个具有非常低时间活动的视频序列组成,其中每个序列包含一个冻结伪影。在开发的数据库上测试了基于直方图的冻结伪影检测算法(HBFDA)和实时无参考冻结检测算法(RTFDA)的性能。测试结果表明,所测试算法的性能较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slow motion video sequences database for freezing artifact detection
In this paper, a new video sequence database, called Slow Motion Video Sequences (SMVS), is developed. The developed SMVS database consists of 30 video sequences with very low temporal activities, where every sequence contains a freezing artifact. The performance of two freezing detection algorithms, the Histogram-Based Freezing Artifacts Detection Algorithm (HBFDA) and the Real-Time no-reference Freezing Detection Algorithm (RTFDA) are tested on the developed database. The testing results show the poor performance of the tested algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信