网络菜谱配料与食品成分数据匹配的POS标记-概率加权方法

T. Eftimov, B. Korousic-Seljak
{"title":"网络菜谱配料与食品成分数据匹配的POS标记-概率加权方法","authors":"T. Eftimov, B. Korousic-Seljak","doi":"10.5220/0005612303300336","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new method that can be used for matching recipe ingredients extracted from the Internet to nutritional data from food composition databases (FCDBs). The method uses part of speech tagging (POS tagging) to capture the information from the names of the ingredients and the names of the food analyses from FCDBs. Then, probability weighted model is presented, which takes into account the information from POS tagging to assign the weight on each match and the match with the highest weight is used as the most relevant one and can be used for further analyses. We evaluated our method using a collection of 721 lunch recipes, from which we extracted 1,615 different ingredients and the result showed that our method can match 91.82% of the ingredients with the FCDB.","PeriodicalId":102743,"journal":{"name":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"POS tagging-probability weighted method for matching the Internet recipe ingredients with food composition data\",\"authors\":\"T. Eftimov, B. Korousic-Seljak\",\"doi\":\"10.5220/0005612303300336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new method that can be used for matching recipe ingredients extracted from the Internet to nutritional data from food composition databases (FCDBs). The method uses part of speech tagging (POS tagging) to capture the information from the names of the ingredients and the names of the food analyses from FCDBs. Then, probability weighted model is presented, which takes into account the information from POS tagging to assign the weight on each match and the match with the highest weight is used as the most relevant one and can be used for further analyses. We evaluated our method using a collection of 721 lunch recipes, from which we extracted 1,615 different ingredients and the result showed that our method can match 91.82% of the ingredients with the FCDB.\",\"PeriodicalId\":102743,\"journal\":{\"name\":\"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005612303300336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005612303300336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种新的方法来匹配从互联网提取的食谱成分和从食品成分数据库(fcdb)的营养数据。该方法利用词性标注(词性标注)从fcbs的成分名称和食品分析名称中获取信息。然后,提出了概率加权模型,该模型考虑了词性标注的信息,为每个匹配分配权重,并将权重最高的匹配作为最相关的匹配,用于进一步分析。我们以721份午餐食谱为样本,从中提取了1615种不同的配料,结果表明,我们的方法与FCDB的匹配率为91.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POS tagging-probability weighted method for matching the Internet recipe ingredients with food composition data
In this paper, we present a new method that can be used for matching recipe ingredients extracted from the Internet to nutritional data from food composition databases (FCDBs). The method uses part of speech tagging (POS tagging) to capture the information from the names of the ingredients and the names of the food analyses from FCDBs. Then, probability weighted model is presented, which takes into account the information from POS tagging to assign the weight on each match and the match with the highest weight is used as the most relevant one and can be used for further analyses. We evaluated our method using a collection of 721 lunch recipes, from which we extracted 1,615 different ingredients and the result showed that our method can match 91.82% of the ingredients with the FCDB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信