珍珠:数据流中的主动循环概念漂移检测

Ocean Wu, Yun Sing Koh, G. Dobbie, Thomas Lacombe
{"title":"珍珠:数据流中的主动循环概念漂移检测","authors":"Ocean Wu, Yun Sing Koh, G. Dobbie, Thomas Lacombe","doi":"10.1109/IJCNN52387.2021.9533926","DOIUrl":null,"url":null,"abstract":"Concept drift detection is used to signal to a learning algorithm that there has been a change in the underlying distribution of the data stream. However, there is a delay in detecting the actual drifts, leading to performance loss between the start of the drift and the detection point. There are two major challenges in reducing such performance loss, specifically the difficulty in anticipating the location of the next drift point and determining the exact concept that will appear for timely concept adaptation. In this research, we leverage concept recurrences in data streams. We proposed a framework called Nacre, which can perform proactive drift detection and online updates to allow for smooth adaptation of concept drifts. We present a novel technique, called drift coordinator, that anticipates the next drift point and assesses the incoming concept. This will ultimately increase accuracy in the classification performance. We demonstrate that our method is able to learn and predict drift trends in streams with recurring drifts. This allows the anticipation of future changes which enables users and detection methods to be more proactive. We empirically show that our technique outperforms baselines in terms of accuracy, kappa, accuracy gain per drift and cumulative accuracy gain on both synthetic and real-world datasets.","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nacre: Proactive Recurrent Concept Drift Detection in Data Streams\",\"authors\":\"Ocean Wu, Yun Sing Koh, G. Dobbie, Thomas Lacombe\",\"doi\":\"10.1109/IJCNN52387.2021.9533926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concept drift detection is used to signal to a learning algorithm that there has been a change in the underlying distribution of the data stream. However, there is a delay in detecting the actual drifts, leading to performance loss between the start of the drift and the detection point. There are two major challenges in reducing such performance loss, specifically the difficulty in anticipating the location of the next drift point and determining the exact concept that will appear for timely concept adaptation. In this research, we leverage concept recurrences in data streams. We proposed a framework called Nacre, which can perform proactive drift detection and online updates to allow for smooth adaptation of concept drifts. We present a novel technique, called drift coordinator, that anticipates the next drift point and assesses the incoming concept. This will ultimately increase accuracy in the classification performance. We demonstrate that our method is able to learn and predict drift trends in streams with recurring drifts. This allows the anticipation of future changes which enables users and detection methods to be more proactive. We empirically show that our technique outperforms baselines in terms of accuracy, kappa, accuracy gain per drift and cumulative accuracy gain on both synthetic and real-world datasets.\",\"PeriodicalId\":396583,\"journal\":{\"name\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN52387.2021.9533926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN52387.2021.9533926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

概念漂移检测用于向学习算法发出信号,表明数据流的底层分布发生了变化。然而,在检测实际漂移时存在延迟,导致漂移开始和检测点之间的性能损失。在减少这种性能损失方面存在两个主要挑战,特别是难以预测下一个漂移点的位置和确定将出现的准确概念以及时适应概念。在这项研究中,我们利用数据流中的概念递归。我们提出了一个名为Nacre的框架,它可以执行主动漂移检测和在线更新,以允许平滑适应概念漂移。我们提出了一种新的技术,称为漂移协调器,它可以预测下一个漂移点并评估传入的概念。这将最终提高分类性能的准确性。我们证明了我们的方法能够学习和预测反复漂移的溪流中的漂移趋势。这允许预测未来的变化,从而使用户和检测方法更加主动。我们的经验表明,我们的技术在精度、kappa、每次漂移精度增益和累积精度增益方面都优于基线,无论是在合成数据集还是实际数据集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nacre: Proactive Recurrent Concept Drift Detection in Data Streams
Concept drift detection is used to signal to a learning algorithm that there has been a change in the underlying distribution of the data stream. However, there is a delay in detecting the actual drifts, leading to performance loss between the start of the drift and the detection point. There are two major challenges in reducing such performance loss, specifically the difficulty in anticipating the location of the next drift point and determining the exact concept that will appear for timely concept adaptation. In this research, we leverage concept recurrences in data streams. We proposed a framework called Nacre, which can perform proactive drift detection and online updates to allow for smooth adaptation of concept drifts. We present a novel technique, called drift coordinator, that anticipates the next drift point and assesses the incoming concept. This will ultimately increase accuracy in the classification performance. We demonstrate that our method is able to learn and predict drift trends in streams with recurring drifts. This allows the anticipation of future changes which enables users and detection methods to be more proactive. We empirically show that our technique outperforms baselines in terms of accuracy, kappa, accuracy gain per drift and cumulative accuracy gain on both synthetic and real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信