稳健的失真风险措施

C. Bernard, Silvana M. Pesenti, S. Vanduffel
{"title":"稳健的失真风险措施","authors":"C. Bernard, Silvana M. Pesenti, S. Vanduffel","doi":"10.2139/ssrn.3677078","DOIUrl":null,"url":null,"abstract":"Robustness of risk measures to changes in underlying loss distributions (distributional uncertainty) is of crucial importance when making well-informed risk management decisions. In this paper, we quantify for any given distortion risk measure its robustness to distributional uncertainty by deriving its range of attainable values when the underlying loss distribution has a known mean and variance and furthermore lies within a ball - specified through the Wasserstein distance - around a reference distribution. We extend our results to account for uncertainty in the first two moments and provide an application to model risk assessment.","PeriodicalId":187811,"journal":{"name":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Robust Distortion Risk Measures\",\"authors\":\"C. Bernard, Silvana M. Pesenti, S. Vanduffel\",\"doi\":\"10.2139/ssrn.3677078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robustness of risk measures to changes in underlying loss distributions (distributional uncertainty) is of crucial importance when making well-informed risk management decisions. In this paper, we quantify for any given distortion risk measure its robustness to distributional uncertainty by deriving its range of attainable values when the underlying loss distribution has a known mean and variance and furthermore lies within a ball - specified through the Wasserstein distance - around a reference distribution. We extend our results to account for uncertainty in the first two moments and provide an application to model risk assessment.\",\"PeriodicalId\":187811,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3677078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3677078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在做出充分知情的风险管理决策时,风险度量对潜在损失分布变化的鲁棒性(分布不确定性)至关重要。在本文中,我们量化了任何给定的失真风险,通过推导其可达到值的范围来衡量其对分布不确定性的鲁棒性,当潜在的损失分布具有已知的均值和方差,并且在参考分布周围通过Wasserstein距离指定的球内。我们扩展了我们的结果,以解释前两个时刻的不确定性,并提供了一个建模风险评估的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Distortion Risk Measures
Robustness of risk measures to changes in underlying loss distributions (distributional uncertainty) is of crucial importance when making well-informed risk management decisions. In this paper, we quantify for any given distortion risk measure its robustness to distributional uncertainty by deriving its range of attainable values when the underlying loss distribution has a known mean and variance and furthermore lies within a ball - specified through the Wasserstein distance - around a reference distribution. We extend our results to account for uncertainty in the first two moments and provide an application to model risk assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信