多类数据集并行分类的粒子群优化实现

M. Balasaraswathi, B. Kalpana
{"title":"多类数据集并行分类的粒子群优化实现","authors":"M. Balasaraswathi, B. Kalpana","doi":"10.1109/ICCCSP.2017.7944088","DOIUrl":null,"url":null,"abstract":"This research concept deals with Parallelizes PSO-SA model which combines the particle swarm optimization (PSO) and Simulated Annealing (SA). Parallel PSO-SA operates by parallelizing the operation of each of the particles and Multistart PSO runs parallel several normal versions of PSO embedded with Simulated Annealing in parallel. The experimental results were conducted on benchmark data sets and the proposed approach can reduce the time complexity and also to increase classification accuracy.","PeriodicalId":269595,"journal":{"name":"2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle swarm optimization parallelism implementation to classify multiclass datasets\",\"authors\":\"M. Balasaraswathi, B. Kalpana\",\"doi\":\"10.1109/ICCCSP.2017.7944088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research concept deals with Parallelizes PSO-SA model which combines the particle swarm optimization (PSO) and Simulated Annealing (SA). Parallel PSO-SA operates by parallelizing the operation of each of the particles and Multistart PSO runs parallel several normal versions of PSO embedded with Simulated Annealing in parallel. The experimental results were conducted on benchmark data sets and the proposed approach can reduce the time complexity and also to increase classification accuracy.\",\"PeriodicalId\":269595,\"journal\":{\"name\":\"2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCSP.2017.7944088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCSP.2017.7944088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究概念是结合粒子群优化(PSO)和模拟退火(SA)的并行PSO-SA模型。并行PSO- sa通过并行化每个粒子的操作来运行,Multistart PSO并行运行嵌入模拟退火的几个正常版本的PSO。在基准数据集上进行的实验结果表明,该方法可以降低时间复杂度,提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle swarm optimization parallelism implementation to classify multiclass datasets
This research concept deals with Parallelizes PSO-SA model which combines the particle swarm optimization (PSO) and Simulated Annealing (SA). Parallel PSO-SA operates by parallelizing the operation of each of the particles and Multistart PSO runs parallel several normal versions of PSO embedded with Simulated Annealing in parallel. The experimental results were conducted on benchmark data sets and the proposed approach can reduce the time complexity and also to increase classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信