{"title":"是的,有逻辑否定","authors":"R. Francisco, Luis Estrada González","doi":"10.22201/iifs.18704905e.2020.1194","DOIUrl":null,"url":null,"abstract":"En este artículo discutimos la tesis de Jc Beall según la cual no hay negación lógica. Evaluamos la solidez del argumento con el que defiende su tesis y presentamos dos razones para rechazar una de sus premisas: que la negación tiene que ser excluyente o exhaustiva. La primera razón involucra una presentación alternativa de las reglas de la negación en sistemas de secuentes diferentes al que Beall presupone. La segunda razón establece que la negación no tiene que ser excluyente o exhaustiva.","PeriodicalId":117174,"journal":{"name":"Crítica (México D. F. En línea)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sí hay negación lógica\",\"authors\":\"R. Francisco, Luis Estrada González\",\"doi\":\"10.22201/iifs.18704905e.2020.1194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En este artículo discutimos la tesis de Jc Beall según la cual no hay negación lógica. Evaluamos la solidez del argumento con el que defiende su tesis y presentamos dos razones para rechazar una de sus premisas: que la negación tiene que ser excluyente o exhaustiva. La primera razón involucra una presentación alternativa de las reglas de la negación en sistemas de secuentes diferentes al que Beall presupone. La segunda razón establece que la negación no tiene que ser excluyente o exhaustiva.\",\"PeriodicalId\":117174,\"journal\":{\"name\":\"Crítica (México D. F. En línea)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crítica (México D. F. En línea)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22201/iifs.18704905e.2020.1194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crítica (México D. F. En línea)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/iifs.18704905e.2020.1194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
En este artículo discutimos la tesis de Jc Beall según la cual no hay negación lógica. Evaluamos la solidez del argumento con el que defiende su tesis y presentamos dos razones para rechazar una de sus premisas: que la negación tiene que ser excluyente o exhaustiva. La primera razón involucra una presentación alternativa de las reglas de la negación en sistemas de secuentes diferentes al que Beall presupone. La segunda razón establece que la negación no tiene que ser excluyente o exhaustiva.