{"title":"一种减少dnn剪枝损失的单次重参数化方法","authors":"Yancheng Li, Qingzhong Ai, Fumihiko Ino","doi":"10.1109/IJCNN55064.2022.9889789","DOIUrl":null,"url":null,"abstract":"Recently, tile pruning has been widely studied to accelerate the inference of deep neural networks (DNNs). However, we found that the loss due to tile pruning, which can eliminate important elements together with unimportant elements, is large on trained DNNs. In this study, we propose a one-shot reparameterization method, called TileTrans, to reduce the loss of tile pruning. Specifically, we repermute the rows or columns of the weight matrix such that the model architecture can be kept unchanged after reparameterization. This repermutation realizes the reparameterization of the DNN model without any retraining. The proposed reparameterization method combines important elements into the same tile; thus, preserving the important elements after the tile pruning. Furthermore, TileTrans can be seamlessly integrated into existing tile pruning methods because it is a pre-processing method executed before pruning, which is orthogonal to most existing methods. The experimental results demonstrate that our method is essential in reducing the loss of tile pruning on DNNs. Specifically, the accuracy is improved by up to 17% for AlexNet while 5% for ResNet-34, where both models are pre-trained on ImageNet.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A One-Shot Reparameterization Method for Reducing the Loss of Tile Pruning on DNNs\",\"authors\":\"Yancheng Li, Qingzhong Ai, Fumihiko Ino\",\"doi\":\"10.1109/IJCNN55064.2022.9889789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, tile pruning has been widely studied to accelerate the inference of deep neural networks (DNNs). However, we found that the loss due to tile pruning, which can eliminate important elements together with unimportant elements, is large on trained DNNs. In this study, we propose a one-shot reparameterization method, called TileTrans, to reduce the loss of tile pruning. Specifically, we repermute the rows or columns of the weight matrix such that the model architecture can be kept unchanged after reparameterization. This repermutation realizes the reparameterization of the DNN model without any retraining. The proposed reparameterization method combines important elements into the same tile; thus, preserving the important elements after the tile pruning. Furthermore, TileTrans can be seamlessly integrated into existing tile pruning methods because it is a pre-processing method executed before pruning, which is orthogonal to most existing methods. The experimental results demonstrate that our method is essential in reducing the loss of tile pruning on DNNs. Specifically, the accuracy is improved by up to 17% for AlexNet while 5% for ResNet-34, where both models are pre-trained on ImageNet.\",\"PeriodicalId\":106974,\"journal\":{\"name\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN55064.2022.9889789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9889789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A One-Shot Reparameterization Method for Reducing the Loss of Tile Pruning on DNNs
Recently, tile pruning has been widely studied to accelerate the inference of deep neural networks (DNNs). However, we found that the loss due to tile pruning, which can eliminate important elements together with unimportant elements, is large on trained DNNs. In this study, we propose a one-shot reparameterization method, called TileTrans, to reduce the loss of tile pruning. Specifically, we repermute the rows or columns of the weight matrix such that the model architecture can be kept unchanged after reparameterization. This repermutation realizes the reparameterization of the DNN model without any retraining. The proposed reparameterization method combines important elements into the same tile; thus, preserving the important elements after the tile pruning. Furthermore, TileTrans can be seamlessly integrated into existing tile pruning methods because it is a pre-processing method executed before pruning, which is orthogonal to most existing methods. The experimental results demonstrate that our method is essential in reducing the loss of tile pruning on DNNs. Specifically, the accuracy is improved by up to 17% for AlexNet while 5% for ResNet-34, where both models are pre-trained on ImageNet.